111111111

Architectural technical
debt: the hard bits

Philippe Kruchten

Philippe Kruchten

Professor Emeritus

University of British Columbia
Vancouver, BC Canada
pbk@ece.ubc.ca

-
N
e

1
)

)
']
X
]

Founder and president

Kruchten Engineering Services Ltd
Vancouver, BC Canada
philippe@kruchten.com @pbpk

Copyright © Kruchten 2021

Outline -

What is technical debt?
The technical debt landscape

Architectural technical debt
— Form, symptoms

— Causes & Consequences

Practical steps

Slides will be at Philippe.Kruchten.com/Talks

11 Mar 2021 Copyright © Kruchten 2021

Key takeaways

* All software systems accumulate technical debt, which is
different than defects.

 How much technical debt you suffer from depends on
the future evolution of the system, not just its past.

 While code-level debt is easier to identify and
remediate, architectural debt has the highest cost of
ownership.

- Technical Debt

-- — Quick recap

* Metaphor introduced by Ward Cunningham (1992)
Until 2010, often mentioned, rarely studied.

* All experienced software developers “feel” it.
|t drags long-lived projects and products down

11 Mar 2021 Copyright © Kruchten 2021

Origin of the metaphor

 Ward Cunningham, at OOPSLA 1992

“Shipping first time code is like going

into debt. A little debt speeds development
so long as it is paid back promptly with a
rewrite...

The danger occurs when the debt is not
repaid. Every minute spent on not-quite-right code
counts as interest on that debt. Entire engineering
organizations can be brought to a stand-still under the
debt load of an unconsolidated implementation, object-
oriented or otherwise.”

Cunningham, OOPSLA 1992

11 Mar 2021 Copyright © Kruchten 2021

Technical Debt Definition 2016

In software-intensive systems, technical

debt is the collection of design or 000
implementation constructs that are
expedient in the short term, but set up
a technical context that can make
future changes more costly or
impossible.

“Managing Technical Debt in Software
Engineering,” Dagstuhl Reports, Vol. 6, Issue 4.
http://www.dagstuhl.de/16162.

11 Mar 2021 Copyright © Kruchten 2021

Technical Debt Definition (cont.)

Technical debt presents an actual or
contingent liability that impacts
internal system qualities, primarily
maintainability and evolvability.

11 Mar 2021 Copyright © Kruchten 2021

The Technical debt landscape

S Visbe 2 Mostly invisible Visible
a architecture code
New features g Architectural debt Low internal quality Defects
Additional functionality E? Structural debt Code complexity Code smells Low external quality
[} . .
< Test debt Coding style violations
E Documentation debt

|
< Evolution issues: evolvability > < Quality issues: maintainability >

|@®@@ Ziirich, May 2012

11 Mar 2021 Copyright © Kruchten 2021

m Mostly invisible Visible

2. architecture code
New features | .2 Architectural debt Low internal quality Defects

)

Additional functionality .2 Structural debt Code smells Low external quality
_g Code complexity
-F‘i Test debt Coding style violations
& Documentation debt

< Evolution issues: evolvability > < Quality issues: maintainability >

11 Mar 2021 Copyright © Kruchten 2021 10

TD in your backlog: negative value, invisible

Visible Invisible

VEVECEELT(ZSS Architectural,
Added Structural
Value functionality

Positive

Negative Technical

Value Debt

©0Ee

11 Mar 2021

Copyright © Kruchten 2021

11

>

Most) invisible

-

Vicible

o architecture
eatures ;: Architectural débt
| functionality % Structural dek’
s
£ Test debt
é Docume

Code complexity

code
Low internal quality

Low exterhal quality

Code smells

Coding style violations

Hon debt

olution issues: evolvability >

11 Mar 2021

Quality issues: maintainability

)

Copyright © Kruchten 2021 12

Code-level technical debt

* Code smells
e Detected by static analysers
* Self-admitted technical debt

Common causes of technical debt

Schedule pressure
More schedule pressure
lgnorance

Success

Environment evolution

— Technical and business

Sloppiness

m Mostly invisible Visible

a architecture code
vfeatures | = Architectural debt Low internal quality Defects
onal functionality .2 Structural debt Code smells Low external qualit
_8 Code complexity
£ Test debt Coding style violations
E Documentation debt

-volution issues: evolvability > < Quality issues: maintainability >

11 Mar 2021 Copyright © Kruchten 2021 15

TD /= defects

The software does work.

If it does not, call it a defect, and fix it (calling it
technical debt is just a cop out)

Technical debt does increase the likelihood of
introducing defects => risk |

Sometimes, but rarely, the boundary is uncertain.

Contrast...
Technical debt

Defect

Visible
External quality

Function of the past
only

Not a good investment

Multiple possible
causes

All systems

Invisible
Internal quality

Function of past and
future

Can be an investment
Mainly triggered by
schedule pressure

Large & long lived
system

Strategy: Constant debt reduction

Make technical debt a visible item on the backlog
Make it visible outside of the software dev. organization
Incorporate debt reduction as a regular activity

Use buffer in longer term planning for yet unidentified
technical debt

invisible

New features
Additional funcionality

Techtiological gap

architecture code
Architectural debt ~ Low internal quality
Structural debt Code smells
omplexity
Coding style violations
Documentation debt

Low €

< Evolution issues: evolvability > < Quality issues: maintain

11 Mar 2021

Copyright © Kruchten 2021

19

Study on Architectural Technical Debt

g AR S =
AR

S) Journal of Systems and Software T
- Volume 176, June 2021, 110925 .

ELSEVIE]

Building and evaluating a theory of architectural
technical debt in software-intensive systems %

Roberto Verdecchia *&, Philippe Kruchten &, Patricia Lago * €&, Ivano Malavolta * & &

https://doi.org/10.1016/].jss.2021.110925 (open access)

Copyright © Kruchten 2021

11 Mar 2021

20

https://doi.org/10.1016/j.jss.2021.110925

Kinds of Architectural Debt

e Three main buckets:

1. Bad architectural design choices
2. Good choices, but wrong context
3. Good choices, bad implementation

Examples of Types of Architectural debt

The Minimal Viable Product (MVP) that stuck
The Workaround that stayed

Re-inventing the wheel

Poor separation of concerns

Architectural lock-in

New context, old architecture

R. Verdecchia 2020

Causes of architectural debt

External causes vs. internal causes

* Time pressure (9/10)

* Lack of architectural knowledge

* Overly complex product development process
 Human factors: bias, lack of experience, etc.

* Lack of anticipation

* Lack of architectural documentation

* The passing of time...

R. Verdecchia 2020

Consequences (and often symptoms)

Carrying costs, reduced development velocity
Loss of business opportunities
Loss of external quality:

— Increased defects

— Inability to scale

Dependence on specific staff

Bring me tools!

Static analyzers will detect much of code-level technical
debt.

More significant technical debt items (structural,
architectural) cannot be detected by tools.

Some team members know about them, though....

They may be mentioned in discussions, but not visible in
the code.

Measuring TD?

* To measure is to assign a numerical value to an attribute
of a thing

e Cost (Technical debt item) =7

* Naively, the effort to bring the system to a state where
the technical debt is not there anymore.

Potential vs. actual debt

e Potential debt
— Looking at what you’ve done so far
— Code level: static analyzers

— Structural, architectural, or technological gap: Much harder
to detect and evaluate

e Actual debt

— When you know the way forward

K.Schmid 2013

Past? or future? Or both?

e Technical debt is not a mere function of the past (what
you have done so far to reach the current state)

* |tis also a function of what you want to do in the future

* So the cost cannot be assessed solely based on the
current state.

It’s just a metaphor!

Where the mortgage metaphor breaks...

Technical debt depends on the future

Technical debt cannot be measured

You can walk away from technical debt

Tec
Tec
Tec

hNnica

hNnica

hNnica

debt should not be completely eliminated
debt cannot be handled in isolation
debt can be a wise investment

Managing Architectural Tech Debt

Live with it (half of the cases)

Minor refactorings (limited benefits)
Major refactorings (costly, product delays)
Re-design and reimplementation (costly, very risky)

We are agile, so we’re immune!

In some cases we are agile and therefore we run faster into technical debt

Agile mottos

“Defer decision to the last responsible moment”
“YAGNI” = You Ain’t Gonna Need It

— But when you do, much later, it is technical debt

— Technical debt often is the accumulation of too many YAGNI
decisions

“We’ll refactor this later”
“Deliver value, early”
Tension between Big Upfront Design and Emergence

You're still agile because you aren’t slowed down by
Tech Debt, yet.

11 Mar 2021

g

Practical steps

From tactical (and simple) to more strategic
(and sophisticated)

Copyright © Kruchten 2021 |@®®@|

34

e Tactical
— Short-term actions — limited scope

— Actual means: use tools, add process steps, make an
immediate plan

* Strategic
— Long-term plan — wider scope
— Process, management, education
— Drive some of the tactical actions above

Practical steps (1) - Awareness

* Organize a lunch-and-learn with your team to introduce the
concept of technical debt. lllustrate it with examples from
your own projects, if possible.

* Create a category “TechDebt” in your issue tracking system,
distinct from defects or from new features. Point at the
specific artifacts involved.

e Standardize on one single form of “Fix me” or “Fix me later”
comment in the source code to mark places that should be
revised and improved later. They will be easier to spot with
a tool.

Practical steps (2) - Identification

* Acquire and deploy in your development environment a
static code analyzer to detect code-level “code smells”.
(Do not panic in front of the large number of positive
warnings).

* After some “triage” feed them in the issue tracking
system, in the tech debt category

* At each development cycle (iteration), reduce some of
the technical debt by explicitly bringing some tech debt
items into your iteration or sprint backlog.

TD in your backlog: negative value, invisible

Visible Invisible

VEVECEELT(ZSS Architectural,
Added Structural
Value functionality

Positive

Negative Technical

Value Debt

©0Ee

11 Mar 2021

Copyright © Kruchten 2021

38

Practical steps (3) - Evaluation

* For identified tech debt items, give not only estimates of
the cost to “reimburse” them or refactor them (in staff
effort), but also estimate of the cost to not reimburse them:
how much it drags the progress now. At least describe
gualitatively the impact on productivity or quality. This can
be assisted by tools from your development environment,
to look at code churn, and effort spent.

* Prioritize technical debt items to fix or refactor, by doing
them first in the parts of your code that are the most
actively modified, leaving aside or for later the parts that
are never touched.

Practical Steps (4) Architectural debt

* Refine in your issue tracker the TechDebt category into 2
subcategories: simple, localized, code-level debt, and
wide ranging, structural or architectural debt.

* Acquire and deploy a tool that will give you hints about
structural issues in your code: dependency analysis

Practical Steps (5) Architectural debt

* Organize small 1-hour brainstorming sessions around
the question: “What design decision did we make in the
past that we regret now because it is costing us much?”
or “If we had to do it again, what should have we
done?”

— This is not a blame game, or a whining session; just identify

high level structural issues, the key design decisions from the
past that have turned to technical debt today.

Practical steps (6) — Process improvements

e For your major kinds of technical debt, identify the root cause —

schedule pressure, process or lack of process, people availability
or turn over, knowledge or lack of knowledge, tool or lack of tool,

change of strategy or objectives— and plan specific actions to
address these root causes, or mitigate their effect.

* Develop an approach for systematic regression testing, so that
fixing technical debt items does not run you in the risk of
breaking the code.

— Counter the “It is not really broken, so | won’t fix it.”

* If you are actively managing risks, consider bringing some major
tech debt items in your list of risks.

So Technical debt...

... it’s messy; especially architectural debt.

Cannot isolate or tokenize

— Lots of dependencies, little tool support

Difficult to assess
— Cost and value dependent on future evolution
Polymorphic

— Good & bad, costly and beneficial, harmful and innocuous

Key takeaways

* All software systems accumulate technical debt, which is
different than defects.

 How much technical debt you suffer from depends on
the future evolution of the system, not just its past.

 While code-level debt is easier to identify and
remediate, architectural debt has the highest cost of
ownership.

Readmg on Technlcal debt

June 2019

Addison-Wesley \ . /
Professional \
Boston ‘Mana 111 N L Ch ¢ 6i b ‘
apter o Is abou
272 p.
5 TQCh 1 Cbt architectural debt

978-0135645932

Reggvcmg Fri thh =0
0 2 O ' \ =Y N
AN /)

4]
z
[
(1]
]
z
4]
z
]
w
[
<
3
'—
L
o
0
z
i
]

Also e-book

EPUB, MOBI, and PDF
from

Informit.com

11 Mar 2021 Copyright © Kruchten 2021 45

Study on Architectural Technical Debt

R. Verdecchia, Ph. Kruchten, P. Lago, |. Malavolta:

“Building and evaluating a theory of architectural technical debt in software-
intensive systems,”

Journal of Systems and Software,

Volume 176, June 2021.

online February 27, 2021
https://doi.org/10.1016/].jss.2021.110925 (open access)

https://doi.org/10.1016/j.jss.2021.110925

More pointers...

* Dagstuhl report: http://www.dagstuhl.de/16162
* What color is your backlog? https://tinyurl.com/y6f7vhpx

* Concrete things you can do about your tech debt:
https://philippe.kruchten.com/2017/02/14/concrete-things-
yvou-can-do-about-your-technical-debt/

* A. Martini et al., Investigating architectural technical debt
accumulation... https://doi.org/10.1016/j.infsof.2015.07.005

* And a couple of earlier papers

11 Mar 2021 Copyright © Kruchten 2021 47

http://www.dagstuhl.de/16162
https://tinyurl.com/y6f7vhpx
https://philippe.kruchten.com/2017/02/14/concrete-things-you-can-do-about-your-technical-debt/
https://doi.org/10.1016/j.infsof.2015.07.005

11 Mar 2021

Slides will be at Philippe.Kruchten.com/Talks

Copyright © Kruchten 2021

48

