
Architectural technical
debt: the hard bits

Philippe Kruchten

11 Mar 2021 Copyright © Kruchten 2021 1

Philippe Kruchten

Professor Emeritus
University of British Columbia
Vancouver, BC Canada
pbk@ece.ubc.ca

Founder and president
Kruchten Engineering Services Ltd
Vancouver, BC Canada
philippe@kruchten.com @pbpk

Copyright © Kruchten 2021 2

Outline

• What is technical debt?
• The technical debt landscape
• Architectural technical debt
– Form, symptoms
– Causes & Consequences

• Practical steps

11 Mar 2021 Copyright © Kruchten 2021 3

Slides will be at Philippe.Kruchten.com/Talks

Key takeaways

• All software systems accumulate technical debt, which is
different than defects.

• How much technical debt you suffer from depends on
the future evolution of the system, not just its past.

• While code-level debt is easier to identify and
remediate, architectural debt has the highest cost of
ownership.

11 Mar 2021 Copyright © Kruchten 2021 4

Technical Debt
– Quick recap

• Metaphor introduced by Ward Cunningham (1992)
• Until 2010, often mentioned, rarely studied.
• All experienced software developers “feel” it.
• It drags long-lived projects and products down

11 Mar 2021 Copyright © Kruchten 2021 5

Origin of the metaphor
• Ward Cunningham, at OOPSLA 1992

“Shipping first time code is like going
into debt. A little debt speeds development
so long as it is paid back promptly with a
rewrite…
The danger occurs when the debt is not
repaid. Every minute spent on not-quite-right code
counts as interest on that debt. Entire engineering
organizations can be brought to a stand-still under the
debt load of an unconsolidated implementation, object-
oriented or otherwise.”

Cunningham, OOPSLA 1992
11 Mar 2021 Copyright © Kruchten 2021 6

Technical Debt Definition 2016

In software-intensive systems, technical
debt is the collection of design or
implementation constructs that are
expedient in the short term, but set up
a technical context that can make
future changes more costly or
impossible.
…. “Managing Technical Debt in Software

Engineering,” Dagstuhl Reports, Vol. 6, Issue 4.
http://www.dagstuhl.de/16162.

11 Mar 2021 Copyright © Kruchten 2021 7

Technical Debt Definition (cont.)

….

Technical debt presents an actual or
contingent liability that impacts
internal system qualities, primarily
maintainability and evolvability.

11 Mar 2021 Copyright © Kruchten 2021 8

Visible

New features
Te

ch
no

lo
gi

ca
l g

ap

Architectural debt
Structural debt Code smells

DefectsLow internal quality

Additional functionality Low external quality

Mostly invisible

Test debt
Documentation debt

Evolution issues: evolvability Quality issues: maintainability

Visible

architecture code

Code complexity

Coding style violations

Zürich, May 2012

The Technical debt landscape

11 Mar 2021 Copyright © Kruchten 2021 9

11 Mar 2021 Copyright © Kruchten 2021 10

TD in your backlog: negative value, invisible

New features
Added
functionality

Architectural,
Structural
features

Defects Technical
Debt

Visible Invisible

Positive
Value

Negative
Value

11 Mar 2021 Copyright © Kruchten 2021 11

11 Mar 2021 Copyright © Kruchten 2021 12

Code-level technical debt

• Code smells
• Detected by static analysers
• Self-admitted technical debt

11 Mar 2021 Copyright © Kruchten 2021 13

Common causes of technical debt

• Schedule pressure
• More schedule pressure
• Ignorance
• Success
• Environment evolution
– Technical and business

• Sloppiness

11 Mar 2021 Copyright © Kruchten 2021 14

11 Mar 2021 Copyright © Kruchten 2021 15

TD /= defects

• The software does work.
• If it does not, call it a defect, and fix it (calling it

technical debt is just a cop out)
• Technical debt does increase the likelihood of

introducing defects => risk !

• Sometimes, but rarely, the boundary is uncertain.

11 Mar 2021 Copyright © Kruchten 2021 16

Contrast…
Defect
• Visible
• External quality
• Function of the past

only
• Not a good investment
• Multiple possible

causes
• All systems

Technical debt
• Invisible
• Internal quality
• Function of past and

future
• Can be an investment
• Mainly triggered by

schedule pressure
• Large & long lived

system

11 Mar 2021 Copyright © Kruchten 2021 17

Strategy: Constant debt reduction

• Make technical debt a visible item on the backlog
• Make it visible outside of the software dev. organization
• Incorporate debt reduction as a regular activity
• Use buffer in longer term planning for yet unidentified

technical debt

11 Mar 2021 Copyright © Kruchten 2021 18

11 Mar 2021 Copyright © Kruchten 2021 19

Study on Architectural Technical Debt

https://doi.org/10.1016/j.jss.2021.110925 (open access)

11 Mar 2021 Copyright © Kruchten 2021 20

https://doi.org/10.1016/j.jss.2021.110925

Kinds of Architectural Debt

• Three main buckets:

1. Bad architectural design choices
2. Good choices, but wrong context
3. Good choices, bad implementation

11 Mar 2021 Copyright © Kruchten 2021 21

Examples of Types of Architectural debt

• The Minimal Viable Product (MVP) that stuck
• The Workaround that stayed
• Re-inventing the wheel
• Poor separation of concerns
• Architectural lock-in
• New context, old architecture

11 Mar 2021 Copyright © Kruchten 2021 22

R. Verdecchia 2020

Causes of architectural debt

External causes vs. internal causes
• Time pressure (9/10)
• Lack of architectural knowledge
• Overly complex product development process
• Human factors: bias, lack of experience, etc.
• Lack of anticipation
• Lack of architectural documentation

• The passing of time…

11 Mar 2021 Copyright © Kruchten 2021 23

R. Verdecchia 2020

Consequences (and often symptoms)

• Carrying costs, reduced development velocity
• Loss of business opportunities
• Loss of external quality:
– Increased defects
– Inability to scale

• Dependence on specific staff

11 Mar 2021 Copyright © Kruchten 2021 24

Bring me tools!

• Static analyzers will detect much of code-level technical
debt.

• More significant technical debt items (structural,
architectural) cannot be detected by tools.

• Some team members know about them, though….
• They may be mentioned in discussions, but not visible in

the code.

11 Mar 2021 Copyright © Kruchten 2021 25

Measuring TD?

• To measure is to assign a numerical value to an attribute
of a thing

• Cost (Technical debt item) = ?

• Naively, the effort to bring the system to a state where
the technical debt is not there anymore.

11 Mar 2021 Copyright © Kruchten 2021 26

Potential vs. actual debt

• Potential debt
– Looking at what you’ve done so far
– Code level: static analyzers
– Structural, architectural, or technological gap: Much harder

to detect and evaluate

• Actual debt
– When you know the way forward

K.Schmid 2013
11 Mar 2021 Copyright © Kruchten 2021 27

Past? or future? Or both?

• Technical debt is not a mere function of the past (what
you have done so far to reach the current state)

• It is also a function of what you want to do in the future

• So the cost cannot be assessed solely based on the
current state.

11 Mar 2021 Copyright © Kruchten 2021 28

It’s just a metaphor!

11 Mar 2021 Copyright © Kruchten 2021 29

Where the mortgage metaphor breaks…

• Technical debt depends on the future
• Technical debt cannot be measured
• You can walk away from technical debt
• Technical debt should not be completely eliminated
• Technical debt cannot be handled in isolation
• Technical debt can be a wise investment

11 Mar 2021 Copyright © Kruchten 2021 30

Managing Architectural Tech Debt

• Live with it (half of the cases)

• Minor refactorings (limited benefits)
• Major refactorings (costly, product delays)
• Re-design and reimplementation (costly, very risky)

11 Mar 2021 Copyright © Kruchten 2021 31

We are agile, so we’re immune!

In some cases we are agile and therefore we run faster into technical debt

11 Mar 2021 Copyright © Kruchten 2021 32

Agile mottos

• “Defer decision to the last responsible moment”
• “YAGNI” = You Ain’t Gonna Need It
– But when you do, much later, it is technical debt
– Technical debt often is the accumulation of too many YAGNI

decisions
• “We’ll refactor this later”
• “Deliver value, early”
• Tension between Big Upfront Design and Emergence
• You’re still agile because you aren’t slowed down by

Tech Debt, yet.
11 Mar 2021 Copyright © Kruchten 2021 33

Practical steps

From tactical (and simple) to more strategic
(and sophisticated)

11 Mar 2021 Copyright © Kruchten 2021 34

• Tactical
– Short-term actions – limited scope
– Actual means: use tools, add process steps, make an

immediate plan

• Strategic
– Long-term plan – wider scope
– Process, management, education
– Drive some of the tactical actions above

11 Mar 2021 Copyright © Kruchten 2021 35

Practical steps (1) - Awareness

• Organize a lunch-and-learn with your team to introduce the
concept of technical debt. Illustrate it with examples from
your own projects, if possible.

• Create a category “TechDebt” in your issue tracking system,
distinct from defects or from new features. Point at the
specific artifacts involved.

• Standardize on one single form of “Fix me” or “Fix me later”
comment in the source code to mark places that should be
revised and improved later. They will be easier to spot with
a tool.

11 Mar 2021 Copyright © Kruchten 2021 36

Practical steps (2) - Identification

• Acquire and deploy in your development environment a
static code analyzer to detect code-level “code smells”.
(Do not panic in front of the large number of positive
warnings).

• After some “triage” feed them in the issue tracking
system, in the tech debt category

• At each development cycle (iteration), reduce some of
the technical debt by explicitly bringing some tech debt
items into your iteration or sprint backlog.

11 Mar 2021 Copyright © Kruchten 2021 37

TD in your backlog: negative value, invisible

New features
Added
functionality

Architectural,
Structural
features

Defects Technical
Debt

Visible Invisible

Positive
Value

Negative
Value

11 Mar 2021 Copyright © Kruchten 2021 38

Practical steps (3) - Evaluation

• For identified tech debt items, give not only estimates of
the cost to “reimburse” them or refactor them (in staff
effort), but also estimate of the cost to not reimburse them:
how much it drags the progress now. At least describe
qualitatively the impact on productivity or quality. This can
be assisted by tools from your development environment,
to look at code churn, and effort spent.

• Prioritize technical debt items to fix or refactor, by doing
them first in the parts of your code that are the most
actively modified, leaving aside or for later the parts that
are never touched.

11 Mar 2021 Copyright © Kruchten 2021 39

Practical Steps (4) Architectural debt

• Refine in your issue tracker the TechDebt category into 2
subcategories: simple, localized, code-level debt, and
wide ranging, structural or architectural debt.

• Acquire and deploy a tool that will give you hints about
structural issues in your code: dependency analysis

11 Mar 2021 Copyright © Kruchten 2021 40

Practical Steps (5) Architectural debt

• Organize small 1-hour brainstorming sessions around
the question: “What design decision did we make in the
past that we regret now because it is costing us much?”
or “If we had to do it again, what should have we
done?”
– This is not a blame game, or a whining session; just identify

high level structural issues, the key design decisions from the
past that have turned to technical debt today.

11 Mar 2021 Copyright © Kruchten 2021 41

Practical steps (6) – Process improvements

• For your major kinds of technical debt, identify the root cause –
schedule pressure, process or lack of process, people availability
or turn over, knowledge or lack of knowledge, tool or lack of tool,
change of strategy or objectives– and plan specific actions to
address these root causes, or mitigate their effect.

• Develop an approach for systematic regression testing, so that
fixing technical debt items does not run you in the risk of
breaking the code.
– Counter the “It is not really broken, so I won’t fix it.”

• If you are actively managing risks, consider bringing some major
tech debt items in your list of risks.

11 Mar 2021 Copyright © Kruchten 2021 42

So Technical debt…

• … it’s messy; especially architectural debt.

• Cannot isolate or tokenize
– Lots of dependencies, little tool support

• Difficult to assess
– Cost and value dependent on future evolution

• Polymorphic
– Good & bad, costly and beneficial, harmful and innocuous

11 Mar 2021 Copyright © Kruchten 2021 43

Key takeaways

• All software systems accumulate technical debt, which is
different than defects.

• How much technical debt you suffer from depends on
the future evolution of the system, not just its past.

• While code-level debt is easier to identify and
remediate, architectural debt has the highest cost of
ownership.

11 Mar 2021 Copyright © Kruchten 2021 44

Reading on Technical debt

11 Mar 2021 Copyright © Kruchten 2021 45

June 2019
Addison-Wesley
Professional
Boston
272 p.
978-0135645932

Also e-book
EPUB, MOBI, and PDF
from
Informit.com

Chapter 6 is about
architectural debt

Study on Architectural Technical Debt

R. Verdecchia, Ph. Kruchten, P. Lago, I. Malavolta:
“Building and evaluating a theory of architectural technical debt in software-
intensive systems,”
Journal of Systems and Software,
Volume 176, June 2021.
online February 27, 2021
https://doi.org/10.1016/j.jss.2021.110925 (open access)

11 Mar 2021 Copyright © Kruchten 2021 46

https://doi.org/10.1016/j.jss.2021.110925

More pointers…

• Dagstuhl report: http://www.dagstuhl.de/16162
• What color is your backlog? https://tinyurl.com/y6f7vhpx
• Concrete things you can do about your tech debt:

https://philippe.kruchten.com/2017/02/14/concrete-things-
you-can-do-about-your-technical-debt/

• A. Martini et al., Investigating architectural technical debt
accumulation… https://doi.org/10.1016/j.infsof.2015.07.005

• And a couple of earlier papers

11 Mar 2021 Copyright © Kruchten 2021 47

http://www.dagstuhl.de/16162
https://tinyurl.com/y6f7vhpx
https://philippe.kruchten.com/2017/02/14/concrete-things-you-can-do-about-your-technical-debt/
https://doi.org/10.1016/j.infsof.2015.07.005

11 Mar 2021 Copyright © Kruchten 2021 48

Slides will be at Philippe.Kruchten.com/Talks

