
Strategic	management	of	
Technical	Debt	

	
Philippe	Kruchten		

April	4th,	2017	
ICSA	2017,	Göteborg	

	
	



Philippe	Kruchten,	Ph.D.,	P.Eng.,	CSDP	

Professor	of	So)ware	Engineering	
NSERC	Chair	in	Design	Engineering	
Department	of	Electrical	and	Computer	Engineering	

University	of	BriJsh	Columbia	
Vancouver,	BC	Canada	
pbk@ece.ubc.ca					
	 	 		

Founder	and	president	
Kruchten	Engineering	Services	Ltd	
Vancouver,	BC	Canada 		
philippe@kruchten.com								@pbpk	
	



Outline	

•  What	is	technical	debt?		
•  The	technical	debt	landscape	
•  Limits	of	the	metaphor	
•  Managing	technical	debt	
•  Tools	and	techniques	
•  FricJon	in	soUware	development	
•  PracJcal	steps	



Technical	Debt	

•  Concept	introduced	by	Ward	Cunningham	
•  OUen	menJoned,	rarely	studied	
•  All	experienced	soUware	developers	“feel”	it.	
•  Drags	long-lived	projects	and	products	down	



Origin	of	the	metaphor	
•  Ward	Cunningham,	at	OOPSLA	1992	

	“Shipping	first	Jme	code	is	like	going	
into	debt.	A	li^le	debt	speeds	development		
so	long	as	it	is	paid	back	promptly	with	a		
rewrite…	
The	danger	occurs	when	the	debt	is	not		
repaid.	Every	minute	spent	on	not-quite-right	code	
counts	as	interest	on	that	debt.	EnJre	engineering	
organizaJons	can	be	brought	to	a	stand-sJll	under	the	
debt	load	of	an	unconsolidated	implementaJon,	
object-oriented	or	otherwise.”	

Cunningham,	OOPSLA	1992	



Technical	Debt	(S.	McConnell)	
•  Implemented	features	(visible	and		
invisible)	=	assets	=	non-debt	

•  Type	1:	unintenJonal,	non-strategic;		
poor	design	decisions,	poor	coding	

•  Type	2:	intenJonal	and	strategic:		
opJmize	for	the	present,	not	for	the		
future.	
–  2.A	short-term:	paid	off	quickly	(refactorings,	etc.)	

•  Large	chunks:	easy	to	track	
•  Many	small	bits:	cannot	track	

–  2.B	long-term	
McConnell	2007	



Technical	Debt	(M.		Fowler)	

Fowler	2009,	2010	



Time	is	Money	(I.	Gat)	

•  Convert	this	in	monetary	terms:		
	“Think	of	the	amount	of	money	the		
borrowed	Jme	represents	–	the		
grand	total	required	to	eliminate		
all	issues	found	in	the	code”	

Gat	2010	



Tech	Debt	(Jim	Highsmith)	

Source:	Highsmith,	2009	



Technical	Debt	(S.	McConnell)	

•  TD:	A	design	or	construcJon	
approach	that	is	expedient	in	the	
short	term	but	that	creates	a	
technical	context	in	which	the	
same	work	will	cost	more	to	do	
later	than	it	would	cost	to	do	now	

McConnell	2011	



Technical	Debt	DefiniJon	
In	soUware-intensive	systems,	
technical	debt	is	the	collecJon	of	
design	or	implementaJon	constructs	
that	are	expedient	in	the	short	term,	
but	set	up	a	technical	context	that	
can	make	future	changes	more	costly	
or	impossible.		
	
Technical	debt	presents	an	actual	or	
conJngent	liability	that	impacts	
internal	system	qualiJes,	primarily	
maintainability	and	evolvability.	

“Managing	Technical	Debt	in	SoUware	Engineering,”	Dagstuhl	
Reports,	Vol.	6,	Issue	4.	h^p://www.dagstuhl.de/16162.	



First	more	capabiliJes	

First	more	infrastructure	

Then,	more	infrastructure	

Then,	more	capabiliJes	

underesJmated		
re-architecJng	costs	

neglected	cost	of	delay	
to	market	

need	to	monitor	technical	
debt	to	gain	insight	into	
life-cycle	efficiency	

Example	

Ozkaya,	SEI,2010	



Making	Hard	Choices		
about	Technical	Debt	

In	the	quest	to	become	market	leader,	players	race	to	release	a	
quality	product	to	the	marketplace.	

The	Hard	Choices	game	is	a	simulaJon	of	the	
soUware	development	cycle	meant	to	communicate	
the	concepts	of	uncertainty,	risk,	opJons,	and	
technical	debt.		
	
	

Hard	Choices	Strategy	Game	to	Communicate	Value	of	Architecture	Thinking	game	
downloadable	from	h^p://www.sei.cmu.edu/architecture/tools/hardchoices/.	





Playing	the	Hard	Choices	Board	Game	

• The	goal	of	the	game	is	to	
accumulate	the	most	points.	
• Players	accumulate	points	by	
crossing	END	ahead	of	their	
compeJtors	and	collecJng	
Tool	Cards.		
• The	person	with	the	most	
points	wins.	

• Market	Leader	Points.	The	first	player	to	cross	END	gets	7	points,	second	gets	3	points,	
and	third	gets	1	point.	The	last	player	remaining	on	the	board	gets	no	points.	

•  Tool	Points.	You	get	1	point	for	each	Tool	Card.		
	



Rules	of	Play	

• 				Start	of	Play	
–  Roll	the	die	to	determine	who	goes	first.		

Play	proceeds	clockwise.	
•  Player	Movement	

–  During	a	turn,	roll	the	die:		
Move	your		piece	the	number	of	spaces		
indicated	on	the	die	minus	the	number	of		
penalJes	incurred,	determined	by	the	number	of	your	Bridge	Cards.		

–  You	may	move	in	either	direcJon,	or	in	both	direcJons,	within	a	turn.	
This	increases	your	opportunity	to	land	on	a	Tool	Square.	

–  Once	a	player	has	reached	the	end,	no	one	can	move	backwards.	
•  End	of	Play	

–  To	enter	the	END	cell	you	may	roll	anything	equal	or	greater	than	the	
number	of	remaining	squares.	

–  The	game	ends	when	one	player	remains	on	the	board.	



Special	Squares	

• 		Hard	Choices	Squares	
–  When	crossing	a	Hard	Choices	Square,	you		

must	decide	whether	to	go	over	the	Shortcut		
Bridge	or	to	go	the	long	way	and	try	to	collect		
more	Tool	Cards.	

• 					Bridges	and	Bridge	Cards	
–  Bridges	count	as	one	movement.	

–  When	crossing	a	Shortcut	Bridge,	you	must	collect	a	Bridge	Card.	Each	Bridge	Card	subtracts	
one	from	subsequent	rolls	of	the	die.	

–  You	may	get	rid	of	a	Bridge	Card	by	skipping	a	turn	anyJme	during	the	game.	

•  Tool	Squares	and	Tool	Cards	
–  When	landing	on	a	Tool	Square,	you	may	elect	to	take	a	Tool	Card.		

–  You	may	only	collect	one	Tool	Card	for	a	given	square.	

–  If	you	have	a	Tool	Card,	you	may	elect	not	to	take	not	to	take	another.	Instead	you	may	play	
the	card	(returning	it	to	the	deck)	and	get	a	free	turn.		



Debrief	AUer	the	Game	
• What	just	happened?	

–  How	did	you	experience	the	game?	
–  What	strategies	did	you	employ?	

• So	what?	
–  How	do	your	experiences	in	the	game	relate	to	the	strategies	you	

employ	during	soUware	development	in	the	face	of	uncertainty?	
–  How	does	this	relate	to	the	choices	you	make—in	invesJng	effort	to	

gain	an	advantage	or	paying	a	price	to	take	shortcuts?	
–  What	are	their	implicaJons?	

• Now	what?	
–  What	will	you	take	away	from	the	experience?	
–  What	might	you	do	differently	as	a	result?	



Outline	

•  What	is	technical	debt?		
•  The	technical	debt	landscape	
•  Limits	of	the	metaphor	
•  Managing	technical	debt	
•  Tools	and	techniques	
•  FricJon	in	soUware	development	
•  Further	research	on	technical	debt	



Visible	

New	features	

Te
ch
no

lo
gi
ca
l	g
ap
	

Architectural	debt	
Structural	debt	 Code	smells	

Defects	Low	internal	quality	

AddiJonal	funcJonality	 Low	external	quality	

Mostly	invisible	

Test	debt	
DocumentaJon	debt	

EvoluJon	issues:	evolvability	 Quality	issues:	maintainability	

Visible	

architecture	 code	

Code	complexity	

Coding	style	violaJons	

Zürich,	May	2012	







TD:	negaJve	value,	invisible	

New	features	
Added	
funcHonality	

Architectural,	
Structural	
features	

Defects	 Technical	
Debt	

Visible	 Invisible	

PosiJve	
Value	

NegaJve	
Value	



Interests	
•  In	presence	of	technical	debt,	
	cost	of	adding	new	features	is	higher;	
	velocity	is	lower.	

•  When	repaying	(fixing),	addiJonal	cost	for	
retrofiung	already	implemented	features	

•  Technical	debt	not	repaid	=>	lead	to	increased	
cost,	forever	

•  Cost	of	fixing	(repaying)	increases	over	Jme	
M.	Fowler,	2009	



Where	the	metaphor	breaks	

•  IniJal	investment	at	T0	in	an	environment	E0.	
Now	in	T2,	E	has	changed	to	E2,	a	mismatch,	
has	occurred,	which	creates	a	debt.		
– The	debt	is	created	by	the	change	of	environment.	
The	right	decision	in	the	right	environment	at	
some	Jme	may	lead	to	technical	debt.	

•  Prudent,	inadvertent	



Where	the	metaphor	breaks…	

•  Technical	debt	depends	on	the	future	
•  Technical	debt	cannot	be	measured	
•  You	can	walk	away	from	technical	debt	
•  Technical	debt	should	not	be	completely	
eliminated	

•  Technical	debt	cannot	be	handled	in	isolaJon	
•  Technical	debt	can	be	a	wise	investment	



Technical	Debt	(1)	

12	
12	

a	

$15	

$5	

12	

b	

$16	

$3	

12	 $18	

$20	 $19	 $18	



Technical	Debt	(2)	

12	
12	

a	

$15	

$5	

12	

b	

$16	

$3	

12	 $18	

8	 8	 $5	 8	 $8	 8	 $10	

$25	 $27	 $28	



Technical	Debt	(3)	

12	
12	

a	

+$2	

$5	

12	 $18	

8	 8	 $5	

$30	



PotenJal	vs.	actual	debt	

•  PotenJal	debt	
– Type	1:OK	to	do	with	tools	(see	Gat	&	co.	
approach)	

– Type	2:	structural,	architectural,	or	technological	
gap:	Much	harder	

•  Actual	debt	
– When	you	know	the	way	forward	

K.Schmid	2013	



TD	litmus	test	

•  If	you	are	not	incurring	any	interest,	then	it	
probably	is	not	a	debt	

McConnell	2013	



Technical	debt	
as	an	investment	?	



TD	and	Real	OpJons	

P1:	 S0	

Market	loves	it	
+	$4M	

Market	hates	it	
+	$1M	

S1	

NPV	(P1)	=	-2M	+	0.5x4M	+	0.5x1M	=	0.5M	

-2M	

Source:	K.	Sullivan,	2010	
at		TD	Workshop	SEI	6/2-3	



TD	and	Real	OpJons	(2)	

P2:	 S0	

Market	loves	it	

Market	hates	it	
+	$1M	

Sd	

NPV	(P2)	=	-1M	+	0.5x3M	+	0.5x1M	=	1M	

-1M	

Source:	K.	Sullivan,	2010	

-1M	
S1	 +4M	

Taking	Technical	Debt	has	increased	system	value.	



TD	and	Real	OpJons	(3)	

P2:	 S0	

Market	loves	it	

Market	hates	it	
+	$1M	

Sd	

NPV	(P3)	=	-1M	+	0.67	x	2.5M	+	0.33	x	1M	=	1M	

-1M	

-1.5M	
S1	 +4M	

More	realisJcally:	
Debt	+	interest	
High	chances	of	success	

Take	Debt	

Repay	debt	



TD	and	Real	OpJons	(3)	

P2:	 S0	

Market	loves	it	

Market	hates	it	
+	$1M	

Sd	

NPV	(P3)	=	-1M	+	0.67	x	2.5M	+	0.33	x	1M	=	1M	

-1M	

-1.5M	
S1	 +4M	

More	realisJcally:	
Debt	+	interest	
High	chances	of	success	

Higher	chance	
of	success	

Repay	debt	+	
50%	interest	



TD	and	Real	OpJons	(4)	

S0	

Favourable	

Unfavourable	

Sd	

S1	 S2	

S2d	

…..	

…..	

Not	debt	really,	but	opHons	with	different	values…		
Do	we	want	to	invest	in	architecture,	in	test,	etc…	

Add	feature	

?	

Source:	K.	Sullivan,	2010	



Outline	

•  What	is	technical	debt?		
•  The	technical	debt	landscape	
•  Limits	of	the	metaphor	
•  Managing	technical	debt	
•  Tools	and	techniques	
•  FricJon	in	soUware	development	
•  Further	research	on	technical	debt	



How	do	people	“tackle”	
technical	debt	



Tackling	Technical	Debt	

Autude,	approaches	found:	
1.  Ignorance	is	bliss	
2.  The	elephant	in	the	room	
3.  Big	scary	$$$$	numbers	
4.  Five	star	ranking	
5.  Constant	reducJon	
6.  We’re	agile,	so	we	are	immune!	



Ignorance	is	bliss	

You’re	just	slower,	and	slower,	but	you	do	not	
know	it,	or	do	not	know	why	

0	

2	

4	

6	

8	

10	

12	

1	 2	 3	 4	 5	 6	 7	

Fu
nc
Ho

na
l	r
eq

ui
re
m
en

t	d
el
iv
er
ed

	

IteraHons	

Velocity	 accumulated	technical	debt	
impacts	ability	to	deliver	



The	elephant	in	the	room	

•  Many	in	the	org.	know	
about	technical	tech.	

•  Indifference:	it’s	
someone	else’s	problem	

•  OrganizaJon	broken	
down	in	small	silos	

•  No	real	whole	product	
mentality	

•  Short-term	focus	



Big	scary	$$$$	numbers	

•  Code	smells 	 	167	person	days	
•  Missing	test 	 	298	person	days	
•  Design 	 	 	 	670		person	days	
•  DocumentaJon 			67	person	days		
	
Totals	
	Work	 	 	 	 	1,202	person	x	days	
	Cost 	 	 	 	 	$577,000	



StaJc	analysis	+	ConsulJng	

•  Cu^er	ConsorJum:	Gat,	et	al.	
– Use	of	Sonar,	etc.	
– Focused	on	code	analysis	
– TD	=	total	value	of	fixing	the	code	base	

•  CAST	soUware	
•  ThoughtWorks		

Debt	analysis	engagements	
Debt	reducJon	engagements	



Issues	
•  Fits	the	metaphor,	indeed.		
•  Looks	very	objecJve…	but…	
•  SubjecJve	in:	

– What	is	counted	
– What	tool	to	use	
–  Cost	to	fix	

		
Not	all	fixes	have	the	same	resulJng	value.	
Sunk	cost	are	irrelevant,	look	into	the	future	only.	
What	does	it	mean	to	be	“Debt	free”??	



Five	star	ranking	

•  Define	some	maintainability	index	
•  Benchmark	relaJve	to	other	soUware	in	the	same	
category	

•  Re-assess	regularly	(e.g.,	weekly)	
•  Look	at	trends,	correlate	changes	with	recent	
changes	in	code	base	

•  SIG	(SoUware	Improvement	Group),	Amsterdam	
•  Powerful	tool	behind	



Constant	debt	reducJon	

•  Make	technical	debt	a	visible	item	on	the	
backlog	

•  Make	it	visible	outside	of	the	soUware	dev.	
organizaJon	

•  Incorporate	debt	reducJon	as	a	regular	
acJvity	

•  Use	buffer	in	longer	term	planning	for	yet	
unidenJfied	technical	debt	

•  Lie	(?)	



Buffer	for	debt	repayment	

Simple	work	
EsJmate		
uncertainJes	

Defect		
correcJon	

Debt	
Repayment	



A	later	release	



We	are	agile,	so	we’re	immune!	

In	some	cases	we	are	agile	and	therefore	we	run	faster	into	technical	debt	



Agile	mo^os	

•  “Defer	decision	to	the	last	responsible	moment”	
•  “YAGNI”	=	You	Ain’t	Gonna	Need	It	

–  But	when	you	do,	it	is	technical	debt	
–  Technical	debt	oUen	is	the	accumulaJon	of	too	many	
YAGNI	decisions	

•  “We’ll	refactor	this	later”	
•  “Deliver	value,	early”	
•  Again	the	tension	between	the	yellow	stuff	and	
the	green	stuff	

•  You’re	sDll	agile	because	you	aren’t	slowed	down	
by	TD	yet.	



Story	of	a	failure	
•  Large	re-engineering	of	
	a	complex	distributed		
world-wide	system;		
2	millions	LOC	in	C,		
C++,	Cobol	and	VB	

•  MulJple	sites,	dozens	of	data	repositories,	hundreds	
of	users,	24	hours	operaJon,	mission-criJcal	
($billions)	

•  xP+Scrum,	1-week	iteraJons,	30	then	up	to	50	
developers	

•  Rapid	progress,	early	success,	features	are	demo-able	
•  Direct	access	to	“customer”,	etc.	
•  A	poster	project	for	scalable	agile	development	



Hiung	the	wall	
•  AUer	4	½		months,	difficulJes		

to	keep	with	the	1-week		
iteraJons	

•  Refactoring	takes	longer		
than	one	iteraJon	

•  Scrap	and	rework	raJo		
increases	dramaJcally	

•  No	externally	visible	progress	anymore	
•  IteraJons	stretched	to	3	weeks	
•  Staff	turn-over	increases		
•  Project	comes	to	a	halt	
•  Lots	of	code,	no	clear	architecture,	no	obvious	way	forward	



Israel	Gat,	2010	
h^p://theagileexecuJve.com/2010/09/20/how-to-break-the-vicious-cycle-of-technical-debt/	

(more)	
Relentless	
Pressure	

Take	
Technical	
Debt	

Fail	to	Pay	
back	

Technical	
debt	

Technical	
Debt	Accrues	

Reduced	
Development	

Team	
Velocity	

Gat’s	Tech	Debt		
vicious	cycle	



Value,	Quality,	Constraints	

•  Value	=	extrinsic	quality	
– Metric:	Net	present	
value	

•  Quality	=	intrinsic	
quality	
– Metric:	Technical	debt	

•  Constraints	=	cost,	
schedule,	scope	
– Metric:	Cost	

Value	

Quality	

			

Cost	

	Highsmith	2010	



EvoluJon	over	Jme	

									Gat	&	Heintz,	Cu[er,	2010	



CogniJve	biases	and	TD	

•  EscalaJon	of	commitment	
– Aka,	too	much	invested	to	quit	

•  Sunk	cost	fallacy	
– aka.	throwing	good	money	aUer	
bad	

•  Anchoring	

•  Confirmatory	bias	



32

Timeline	

1

ti	 tj	

Incurred	 Symptom	

IntenJonal	and	strategic	

Payoff	Rework	

4

5

What is the debt? 
Technical debt item description  
Risk analysis, Development state analysis 

How does debt accumulate? 
Static and architecture analysis 

When to pay back debt? 
Architecture-focused release planning 



Outline	

•  What	is	technical	debt?		
•  The	technical	debt	landscape	
•  Limits	of	the	metaphor	
•  Managing	technical	debt	
•  Tools	and	techniques	
•  FricJon	in	soUware	development	
•  Further	research	on	technical	debt	



Tools	and	Techniques	

Some	examples	



Tools	for	Technical	Debt	Analysis	
•  Vendors	include	

•  CAST	
•  Inspearit	
•  SonarSource	(Sonarqube)	
•  Thoughtworks	
•  SoUware	Improvement	Group	(SIG)	
•  Laux	
•  Hello2morrow	
•  Tocéa	(ScerJfy)	
•  Xdepend	
•  Klocwork	
•  JetBrains	



•  Real	OpJon	theory	
•  Dependency	Structure	Matrix	

– PropagaJon	cost	
•  Sonarqube	
•  SQALE	
•  ScerJfy	



SQALE	

•  SQALE	=	SoUware	Quality	Assessment	based	
on	Lifecycle	ExpectaJon	

•  Jean-Louis	Letouzey	and	Thierry	Coq		
•  Inspearit		

–  (previously	known	as	Det	Norske	Veritas	France)	



SQALE	



Quality	model	



Costs	



Reduce	business	imapt	



Maximize	RoI	



SonarQube	



SonarQube	



SonarQube	and	SQALE	



SQALE-like	dashboard	with	SonarQube	



Structural	level	

•  Dependency	analysis	
– PropagaJon	cost	

•  Interview	the	designers	
– TD	and	its	causes	are	in	their	heads	



Dependency	Structure	Matrix	

A	 B	 C	

A	
Strength	of	
B’s	
dependency	
on	A	

B	
Strength	of	
A’s	
dependency	
on	B	

Strength	of	
C’s	
dependency	
on	B	

C	



Dependencies	for	MS-Lite	



Dependency	Structure	Matrix	



Dependencies	in	Release	Planning	

Dependencies between  
stories & supporting 
architectural elements 

Understanding the dependencies between 
stories and architectural elements enables 
staged implementation of technical 
infrastructure in support of achieving 
stakeholder value. 

Dependencies between 
architectural elements 

Low-dependency architectures are a critical 
enabler for scaling-up agile development.1 

Dependencies between 
stories 

High-value stories may require the 
implementation of lower-value stories as 
precursors.2 

1	Mary	and	Tom	Poppendieck	–	“Leading	Lean	SoUware	Development”	

2	Mark	Denne,		Jane	Cleland-Huand	–	“SoUware	by	Numbers”	



PropagaJon	cost	

•  “Density”	of	the	DSM		
– Proposed	by	McCormack	et	al.	in	2006	
– Several	limitaJons	as	a	tool	to	measure	T.D.	

•  Improved	PC:	
– Boolean	to	conJnuous	value	(=dependency	
“strength”)	

– Changes	not	uniformly	spread	throughout	the	
code	

– Less	sensiJve	to	size	of	code	
McCormack	et	al.	2006	



So	Technical	debt…	

•  …	it’s	messy	

•  Cannot	isolate	or	tokenize	
– Lots	of	dependencies	

•  Cannot	assess	easily	
– Cost	and	value	dependent	on	future	evoluJon	

•  Polymorphic	
– Good	&	bad,	costly	and	beneficial,	harmful	and	
innocuous	



PracJcal	steps	

From	tacJcal	(and	simple)	to	more	
strategic	(and	sophisJcated)	



•  TacJcal	
– Short-term	acJons	–	limited	scope	
– Actual	means:	tools,	process	steps,	immiedate	
plan	

•  Strategic	
– Long-term	plan–	wider	scope	
– Process,	management,	educaJon	
– Drive	some	of	the	tacJcal	acJons	above	



PracJcal	steps	(1)	-	Awareness	
•  Organize	a	lunch-and-learn	with	your	team	to	
introduce	the	concept	of	technical	debt.	Illustrate	
it	with	examples	from	your	own	projects,	if	
possible.	

•  Create	a	category	“TechDebt”	in	your	issue	
tracking	system,	disJnct	from	defects,	or	new	
features.	Point	at	the	specific	arJfacts	involved.	

•  Standardize	on	one	single	form	of	“Fix	me”	or	
“Fix	me	later”	comment	in	the	source	code	to	
mark	places	that	should	be	revised	and	improved	
later.	They	will	be	easier	to	spot	with	a	tool.	



PracJcal	steps	(2)	-	IdenJficaJon	

•  Acquire	and	deploy	in	your	development	
environment	a	staJc	code	analyser	to	detect	
code-level	“code	smells”.	(Do	not	panic	in	front	
of	the	large	number	of	posiJve	warnings).	

•  AUer	some	“triage”	feed	them	in	the	issue	
tracking	system,	in	the	tech	debt	category	

•  At	each	development	cycle	(iteraJon),	reduce	
some	of	the	technical	debt	by	explicitly	bringing	
some	tech	debt	items	into	your	iteraJon	or	sprint	
backlog.	



PracJcal	steps	(3)	-	EvaluaJon	
•  For	idenJfied	tech	debt	items,	give	not	only	esJmates	
of	the	cost	to	“reimburse”	them	or	refactor	them	(in	
staff	effort),	but	also	esJmate	of	the	cost	to	not	
reimburse	them:	how	much	it	drags	the	progress	now.	
At	least	describe	qualitaJvely	the	impact	on	
producJvity	or	quality.	This	can	be	assisted	by	tools	
from	your	development	environment,	to	look	at	code	
churn,	and	effort	spent.	

•  PrioriJze	technical	debt	items	to	fix	or	refactor,	by	
doing	them	first	in	the	parts	of	your	code	that	are	the	
most	acJvely	modified,	leaving	aside	or	for	later	the	
parts	that	are	never	touched.	



PracJcal	Steps	(4)	Architectural	debt	

•  Refine	in	your	issue	tracker	the	TechDebt	category	into	2	
subcategories:	simple,	localized,	code-level	debt,	and	wide	
ranging,	structural	or	architectural	debt.	

•  Acquire	and	deploy	a	tool	that	will	give	you	hints	about	
structural	issues	in	your	code:	dependency	analysis	

•  Organize	small	1-hour	brainstorming	sessions	around	the	
quesJon:	“What	design	decision	did	we	make	in	the	past	
that	we	regret	now	because	it	is	cosJng	us	much?”	or	“If	
we	had	to	do	it	again,	what	should	have	we	done?”		
–  This	is	not	a	blame	game,	or	a	whining	session;	just	idenJfy	high	
level	structural	issues,	the	key	design	decisions	from	the	past	
that	have	turned	to	technical	debt	today.	



PracJcal	steps	(5)	–	Process	
improvements	

•  For	your	major	kinds	of	technical	debt,	idenJfy	the	
root	cause	–schedule	pressure,	process	or	lack	of	
process,	people	availability	or	turn	over,	knowledge	or	
lack	of	knowledge,	tool	or	lack	of	tool,	change	of	
strategy	or	objecJves–		and	plan	specific	acJons	to	
address	these	root	causes,	or	miJgate	their	effect.	

•  Develop	an	approach	for	systemaJc	regression	tesJng,	
so	that	fixing	technical	debt	items	does	not	run	you	in	
the	risk	of	breaking	the	code.		
–  Counter	the	“It	is	not	really	broken,	so	I	won’t	fix	it.”	

•  If	you	are	acJvely	managing	risks,	consider	bringing	
some	major	tech	debt	items	in	your	list	of	risks.	



References	
§  Brown,	N.,	Cai,	Y.,	Guo,	Y.,	Kazman,	R.,	Kim,	M.,	Kruchten,	P.,	et	al.	(2010).	Managing	

Technical	Debt	in	So)ware-Intensive	Systems.	Paper	presented	at	the	Future	of	soUware	
engineering	research	(FoSER)	workshop,	part	of	FoundaJons	of	SoUware	Engineering	(FSE	
2010)	conference.		

§  Brown,	N.,	Nord,	R.,	Ozkaya,	I.,	Kruchten,	P.,	&	Lim,	E.	(2011).	Hard	Choice:	A	game	for	
balancing	strategy	for	agility.	Paper	presented	at	the	24th	IEEE	CS	Conference	on	SoUware	
Engineering	EducaJon	and	Training	(CSEE&T	2011),	Honolulu,	HI,	USA.	

§  Cunningham,	W.	(1992).	The	WyCash	PorLolio	Management	System.	Paper	presented	at	the	
OOPSLA'92	conference,	ACM.	Retrieved	from	h^p://c2.com/doc/oopsla92.html	

§  CurJs,	B.,	Sappidi,	J.,	&	Szynkarski,	A.	(2012).	EsJmaJng	the	Principal	of	an	ApplicaJon’s	
Technical	Debt.	IEEE		SoUware,	29(6).	

§  Denne,	M.,	&	Cleland-Huang,	J.	(2004).	So)ware	by	Numbers:	Low-Risk,	High-Return	
Development,	PrenJce	Hall.	

§  Denne,	M.,	&	Cleland-Huang,	J.	(2004).	The	Incremental	Funding	Method:	Data-Driven	
SoUware	Development,	IEEE	So)ware,	21(3),	39-47.	

§  Fowler,	M.	(2009),	Technical	debt	quadrant,	Blog	post	at:	
h^p://www.marJnfowler.com/bliki/TechnicalDebtQuadrant.html		

§  Gat,	I.	(ed.).	(2010).	How	to	seSle	your	technical	debt--a	manager's	guide.	Arlington	Mass:	
Cu^er	ConsorJum.	

§  Kruchten,	Ph.	(2010)	Contextualizing	Agile	SoUware	Development,”	Paper	presented	at	the	
EuroSPI	2010	conference	in	Grenoble,	Sept.1-3,	2010			



References	
§  Kruchten,	P.,	Nord,	R.,	&	Ozkaya,	I.	(2012).	Technical	debt:	from	metaphor	to	theory	and	pracJce.	

IEEE		So)ware,	29(6).		
§  Kruchten,	P.,	Nord,	R.,	Ozkaya,	I.,	&	Visser,	J.	(2012).	Technical	Debt	in	SoUware	Development:	from	

Metaphor	to	Theory--Report	on	the	Third	InternaJonal	Workshop	on	Managing	Technical	Debt,	
held	at	ICSE	2012	ACM	SIGSOFT	So)ware	Engineering	Notes,	37(5).		

§  Li,	Z.,	Madhavji,	N.,	Murtaza,	S.,	Gi^ens,	M.,	Miranskyy,	A.,	Godwin,	D.,	&	Cialini,	E.	(2011).	
CharacterisJcs	of	mulJple-component	defects	and	architectural	hotspots:	a	large	system	case	
study.	Empirical	So)ware	Engineering,	16(5),	667-702.	doi:	10.1007/s10664-011-9155-y	

§  Lim,	E.	(2012).	Technical	Debt:	What	So)ware	PracDDoners	Have	to	Say.	(Master's	thesis),	
University	of	BriJsh	Columbia,	Vancouver,	Canada.				

§  Lim,	E.,	Taksande,	N.,	&	Seaman,	C.	B.	(2012).	A	Balancing	Act:	What	SoUware	PracJJoners	Have	to	
Say	about	Technical	Debt.	IEEE		So)ware,	29(6).	

§  MacCormack,	A.,	Rusnak,	J.,	&	Baldwin,	C.	Y.	(2006).	Exploring	the	structure	of	complex	soUware	
designs:	An	empirical	study	of	open	source	and	proprietary	code.	Management	Science,	52(7),	
1015-1030.		

§  Nord,	R.,	Ozkaya,	I.,	Kruchten,	P.,	&	Gonzalez,	M.	(2012).	In	search	of	a	metric	for	managing	
architectural	technical	debt.	Paper	presented	at	the	Working	IEEE/IFIP	Conference	on	So)ware	
Architecture	(WICSA	2012),	Helsinki,	Finland.	

§  McConnell,	S.	(2007)	Notes	on	Technical	Debt,	Blog	post	at:	h^p://blogs.construx.com/blogs/
stevemcc/archive/2007/11/01/technical-debt-2.aspx	

§  Special	issue	of	CuSer	IT	Journal	on	Technical	Debt,	edited	by	I.	Gat	(October	2010)	Cu^er	IT	
Journal,	23	(10).	

§  Sterling,	C.	(2010)	Managing	So)ware	Debt,	Addison-Wesley.	



References	(cont.)	
§  R.	O.	Spinola,	N.	Zazworka,	A.	Vetrò,	C.	B.	Seaman,	and	F.	Shull,	"InvesJgaJng	Technical	Debt	

Folklore:	Shedding	Some	Light	on	Technical	Debt	Opinion,"	in	Proceedings	of	the	4th	
Workshop	on	Managing	Technical	Debt,	at	ICSE	2013,	P.	Kruchten,	I.	Ozkaya,	and	R.	Nord,	
Eds.,	IEEE,	2013.	

§  K.	Schmid,	"On	the	Limits	of	the	Technical	Debt	Metaphor,"	in		Proceedings	of	the	4th	
Workshop	on	Managing	Technical	Debt,	at	ICSE	2013,	P.	Kruchten,	I.	Ozkaya,	and	R.	Nord,	
Eds.,	IEEE,	2013,	pp.	63-66.	

§  K.	Schmid,	"A	Formal	Approach	to	Technical	Debt	Decision	Making,"	in	Proceedings	of	the	
Conference	on	Quality	of	SoUware	Architecture	QoSA'2013,	Vancouver,	2013,	ACM.	

§  Avgeriou,	P.,	Kruchten,	P.,	Ozkaya,	I.,	&	Seaman,	C.	(eds)	“Managing	Technical	Debt	in	
SoUware	Engineering	(Dagstuhl	Seminar	16162)”.	Dagstuhl	Reports	(Vol.	6,	issue	4	pp.	
110-138).	Dagstuhl,	Germany:	Schloss	Dagstuhl--Leibniz-Zentrum	für	InformaJk.	



Other	sources	(Talks/slides)	
•  Gat,	I.,	Heintz,	J.	(Aug.	19,	2010)	Webinar:	Reining	in	Technical	Debt,	

Cu^er	ConsorJum.	
•  McConnell,	S.	(October	2011)	Managing	technical	debt.	(Webinar)		
•  Kniberg,	H.	(2008)	Technical	debt-How	not	to	ignore	it,	at	Agile	2008	

conference.	
•  Kruchten,	P.	(2009)	What	colour	is	your	backlog?	Agile	Vancouver	

Conference.	h^p://philippe.kruchten.com/talks	
•  Sterling,	C.	(2009)	h^p://www.slideshare.net/csterwa/managing-

soUware-debt-pnsqc-2009	
•  Short,	G.	(2009)	h^p://www.slideshare.net/garyshort/technical-

debt-2985889	
•  West,	D.	(January	2011),	Balancing	agility	and	technical	debt,	Forrester	&	

Cast	SoUware	



Other	sources	
•  Slides	on	Sonar,	from	Olivier	Gaudin,	CEO	of	Sonarqube	

•  Slides	on	SQALE	from	Jean-Louis	Letouzey,	Inspearit	

•  Slides	on	DSM	from	Ipek	Ozkaya	and	Robert	Nord,	SEI	



Conceptual	model	of	
Technical	debt	






