Strategic management of

Technical Debt

Philippe Kruchten
April 4t 2017
ICSA 2017, Goteborg

Philippe Kruchten, ph.o., r.eng., csop

Professor of Software Engineering
BC NSERC Chair in Design Engineering
|

=~ Department of Electrical and Computer Engineering
_—
= 0D

C

v/~ University of British Columbia
Vancouver, BC Canada
pbk@ece.ubc.ca

Founder and president

Kruchten Engineering Services Ltd
Vancouver, BC Canada
philippe@kruchten.com @pbpk

Outline

What is technical debt?

The technical debt landscape
Limits of the metaphor
Managing technical debt

Tools and techniques

Friction in software development
Practical steps

-- Technical Debt

* Concept introduced by Ward Cunningham

* Often mentioned, rarely studied

* All experienced software developers “feel” it.
* Drags long-lived projects and products down

Origin of the metaphor

 Ward Cunningham, at OOPSLA 1992

“Shipping first time code is like going

into debt. A little debt speeds development
so long as it is paid back promptly with a
rewrite...

The danger occurs when the debt is not
repaid. Every minute spent on not-quite-right code
counts as interest on that debt. Entire engineering
organizations can be brought to a stand-still under the
debt load of an unconsolidated implementation,
object-oriented or otherwise.”

Cunningham, OOPSLA 1992

Technical Debt (S. McConnell)

* Implemented features (visible and
invisible) = assets = non-debt

* Type 1: unintentional, non-strategic;
poor design decisions, poor coding

* Type 2: intentional and strategic:
optimize for the present, not for the

future.

— 2.A short-term: paid off quickly (refactorings, etc.)

e Large chunks: easy to track
* Many small bits: cannot track

— 2.B long-term
McConnell 2007

Technical Debt (M. Fowler)

Reckless Prudent
“We don’t have time “We must ship now
for design” and deal with
consequences”
Deliberate
Inadvertent

“Now we know how we

“What's Layering?” should have done it”

Fowler 2009, 2010

Time is Money (l. Gat)

* Convert this in monetary terms:

“Think of the amount of money the
borrowed time represents — the
grand total required to eliminate
all issues found in the code”

Gat 2010

Cost of Change (CoC)

>

Product
Release

——

Tech Debt (Jim Highsmith)

Customer
Responsiveness

Technical Debt

_ ~
Optimal CoC

—

>

12 3 456 7 8

Years

Once on far right of curve, all
choices are hard

If nothing is done, it just gets
worse

In applications with high
technical debt, estimating is
nearly impossible

Only 3 strategies

1. Do nothing, it gets worse

2. Replace, high cost/risk

3. Incremental refactoring,
commitment to invest

Source: Highsmith, 2009

Technical Debt (S. McConnell)

* TD: A design or construction

approach that is expedient in the
short term but that creates a

technical context in which the
same work will cost more to do
later than it would cost to do now

McConnell 2011

Technical Debt Definition

In software-intensive systems, 00
technical debt is the collection of o
design or implementation constructs :

that are expedient in the short term, , s

but set up a technical context that
can make future changes more costly
or impossible.

Technical debt presents an actual or
contingent liability that impacts
internal system qualities, primarily
. . . e “Managing Technical Debt in Software Engineering,” Dagstuhl
m a | nta | n a b | I |ty a n d evo Iva b | | |ty. Reports, Vol. 6, Issue 4. http://www.dagstuhl.de/16162.

Exa m p I e unde.resti.mated

re-architecting costs

First more capabilities Then, more infrastructure

debt to gain insight into
life-cycle efficiency

neglected cost of delay
to market

First more infrastructure Then, more capabilities

Ozkaya, SEI,2010

Making Hard Choices
about Technical Debt

P The Hard Choices game is a simulation of the
software development cycle meant to communicate
the concepts of uncertainty, risk, options, and

O technical debt.

In the quest to become market leader, players race to release a
qguality product to the marketplace.

Software Engineering Institute ‘ Carnegie Mellon

0

Hard Choices Strategy Game to Communicate Value of Architecture Thinking game
downloadable from http://www.sei.cmu.edu/architecture/tools/hardchoices/.

O

& Sottware Engineering Institute | Carnegic Mellan.

START
-(m

il

Do you take the time to
gather more tools or do
you take a shortcut?

)

Playing the Hard Choices Board Game

*The goal of the game is to
accumulate the most points.
*Players accumulate points by
crossing END ahead of their
competitors and collecting
Tool Cards.

*The person with the most
points wins.

e Market Leader Points. The first player to cross END gets 7 points, second gets 3 points,
and third gets 1 point. The last player remaining on the board gets no points.

e Tool Points. You get 1 point for each Tool Card.

Software Engineering Institute | Carnegie Mellon

Rules of Play

* Start of Play

— Roll the die to determine who goes first.
Play proceeds clockwise.
* Player Movement

— During a turn, roll the die:
Move your piece the number of spaces
indicated on the die minus the number of
penalties incurred, determined by the number of your Bridge Cards.

— You may move in either direction, or in both directions, within a turn.
This increases your opportunity to land on a Tool Square.

— Once a player has reached the end, no one can move backwards.

 End of Play
— To enter the END cell you may roll anything equal or greater than the
number of remaining squares.

— The game ends when one player remains on the board.

Special Squares

e Hard Choices Squares

— When crossing a Hard Choices Square, you
must decide whether to go over the Shortcut
| Bridge or to go the long way and try to collect

more Tool Cards.

e Bridges and Bridge Cards

— Bridges count as one movement.
m — When crossing a Shortcut Bridge, you must collect a Bridge Card. Each Bridge Card subtracts

one from subsequent rolls of the die.

You may get rid of a Bridge Card by skipping a turn anytime during the game.
* Tool Squares and Tool Cards
— When landing on a Tool Square, you may elect to take a Tool Card.

— You may only collect one Tool Card for a given square.

Debrief After the Game m

Do you take the time to
gather more tools or do
you take a shortcu

*What just happened?
— How did you experience the game?
— What strategies did you employ?

*So what?

— How do your experiences in the game relate to the strategies you
employ during software development in the face of uncertainty?

— How does this relate to the choices you make—in investing effort to
gain an advantage or paying a price to take shortcuts?

— What are their implications?

*Now what?
— What will you take away from the experience?
— What might you do differently as a result?

t?

Outline

What is technical debt?

The technical debt landscape
Limits of the metaphor

Managing technical debt

Tools and techniques

Friction in software development
Further research on technical debt

m Mostly invisible Visible
a architecture code
New features ‘—Q: Architectural debt Low internal quality Defects
Additional functionality E" Structural debt Code complexity Code smells Low external quality
_g Test debt Coding style violations
E Documentation debt

| |
Evolution issues: evolvability > < Quality issues: maintainability

Zurich, May 2012

>

Mostl/invisible

e

Vicible

architecture
Architectural de

Structural del:

Dt

rality

Test debt

Technological gap

Documen

Code complexity

code
Low internal quality

Code smells

Coding style violations

Hon debt

issues: evolvability >

Low external quality

Quality issues: maintainability

)

Visible . vinvisible

a architecture code
New features | .2 Architectural debt Low ifiternal quality
Additional furictionality -:% Structural debt Code smells
% Code complexity
_g Test debt Coding style violations
2 Documentdtion debt
[.

<' Quality issues: m

<l Evolution issues: evolvability

TD: negative value, invisible

Visible Invisible

VN EVECEE{ESS Architectural,

Positive
Added Structural
Value functionality
Negative Technical

Value Debt

Interests .

In presence of technical debt,
cost of adding new features is higher;
velocity is lower.

When repaying (fixing), additional cost for
retrofitting already implemented features

Technical debt not repaid => lead to increased
cost, forever

Cost of fixing (repaying) increases over time
M. Fowler, 2009

Where the metaphor breaks

e |nitial investment at TO in an environment EO.
Now in T2, E has changed to E2, a mismatch,
has occurred, which creates a debt.

— The debt is created by the change of environment.
The right decision in the right environment at
some time may lead to technical debt.

 Prudent, inadvertent

Where the metaphor breaks...

Technical debt depends on the future

Technical debt cannot be measurec
You can walk away from technical @

Technical debt should not be comp
eliminated

ebt
etely

Technical debt cannot be handled in isolation

Technical debt can be a wise investment

Technical Debt (1)

S15
o 4-»?

J$s | b |3

$16 o2 $18

$20 $19 $18

Technical Debt (2)

$15 $16
N &
S5

La Jss [[b s

EE = El:-: El:

$25 $27 $28

Technical Debt (3)

B 512 =)
BN - "F
_a |

+S2
S5

R - B 55
J

\
$30

Potential vs. actual debt

e Potential debt

— Type 1:0K to do with tools (see Gat & co.
approach)

— Type 2: structural, architectural, or technological
gap: Much harder

* Actual debt
— When you know the way forward

K.Schmid 2013

TD litmus test

* |f you are not incurring any interest, then it
probably is not a debt

McConnell 2013

g

Technical debt
as an investment ?

TD and Real Options

Market loves it

+ S4M
- 3
2M Q/,Q

N .
R) Market hates it

+S1M
NPV (P,) = -2M + 0.5x4M + 0.5x1M = 0.5M

Source: K. Sullivan, 2010
at TD Workshop SEI 6/2-3

TD and Real Options (2)

-1M
Market loves it S, +4AM
1M Q//O-"
P2t S Sd
Oy,
o5 Market hates it

+S1M

NPV (P,) = -1M + 0.5x3M + 0.5x1M = 1M

Taking Technical Debt has increased system value. Source: K. Sullivan, 2010

TD and Real Options (3)

Take Debt
-1.5M

/ Market loves it===p S, +4M
1M 08!

Py: S, m— S °©

N
\0’3A Market hates it

+S1M

NPV (P;) =-1M + 0.67 x 2.5M + 0.33 x 1M = 1M

More realistically:
Debt + interest
High chances of success

TD and Real Options (3)

Higher chance
of success

-1.5M
Market loves it S, +4AM

P Repay debt +
N . o/ ;
‘33 Market hates it 50% interest

+S1M

NPV (P;) =-1M + 0.67 x 2.5M + 0.33 x 1M = 1M

More realistically:
Debt + interest
High chances of success

TD and Real Options (4)

Add feature
o S, —— S, —

?*é/? Na

Favourable Ao,

Yx
Q
/ wﬁé’ —
o S,y T L
k

Unfavourable

So > S,

Not debt really, but options with different values...
Do we want to invest in architecture, in test, etc...

Source: K. Sullivan, 2010

Outline

What is technical debt?

The technical debt landscape
Limits of the metaphor

Managing technical debt

Tools and techniques

Friction in software development
Further research on technical debt

g

How do people “tackle”
technical debt

Tackling Technical Debt

Attitude, approaches found:
. Ignorance is bliss

. The elephant in the room
Big scary SSSS numbers
Five star ranking
Constant reduction

I N

. We're agile, so we are immune!

lgnorance is bliss

You’'re just slower, and slower, but you do not
know it, or do not know why

Velocity accumulated technical debt
impacts ability to deliver

N

= e
o

Functional requirement delivered

o N £ (e} 0o
1 1

Iterations

The elephant in the room

Many in the org. know
about technical tech.

Indifference: it’s
someone else’s problernr

Organization broken
down in small silos

N O re a I W h O I e p ro d u Ct T'mright there in the room, and no one even acknowledges me.”
mentality

Short-term focus

Big scary SSSS numbers

* Code smells 167 person days
* Missing test 298 person days
* Design 670 person days

* Documentation 67 person days

Totals
Work 1,202 person x days
Cost S577,000

Static analysis + Consulting

e Cutter Consortium: Gat, et al.
— Use of Sonar, etc.
— Focused on code analysis

— TD = total value of fixing the code base
* CAST software

* ThoughtWorks

Debt analysis engagements
Debt reduction engagements

Issues .

* Fits the metaphor, indeed.
* Looks very objective... but...
e Subjective in:

— What is counted

— What tool to use
— Cost to fix

Not all fixes have the same resulting value.
Sunk cost are irrelevant, look into the future only.
What does it mean to be “Debt free”??

. Five star ranking

* Define some maintainability index

e Benchmark relative to other software in the same
category

e Re-assess regularly (e.g., weekly)

* Look at trends, correlate changes with recent
changes in code base

e SIG (Software Improvement Group), Amsterdam

e Powerful tool behind

Constant debt reduction

Make technical debt a visible item on the
backlog

Make it visible outside of the software dev.
organization

Incorporate debt reduction as a regular
activity

Use buffer in longer term planning for yet
unidentified technical debt

Lie (?)

Buffer for debt repayment

Debt

Defect Repayment
Estimate correctlon
Simple work uncertainties

A later release

We are agile, so we’re immune!

In some cases we are agile and therefore we run faster into technical debt

Agile mottos

“Defer decision to the last responsible moment”

“YAGNI” = You Ain’t Gonna Need It

— But when you do, it is technical debt

— Technical debt often is the accumulation of too many
YAGNI decisions

“We'll refactor this later”
“Deliver value, early”

Again the tension between the yellow stuff and
the green stuff

You’re still agile because you aren’t slowed down
by TD yet.

Story of a failure

Large re-engineering of
a complex distributed
world-wide system;

2 millions LOC in C,
C++, Cobol and VB

Multiple sites, dozens of data repositories, hundreds
of users, 24 hours operation, mission-critical
(Sbillions)

XP+Scrum, 1-week iterations, 30 then up to 50
developers

Rapid progress, early success, features are demo-able
Direct access to “customer”, etc.
A poster project for scalable agile development

Hitting the wall

After 4 4 months, difficulties
to keep with the 1-week
iterations

Refactoring takes longer
than one iteration

Scrap and rework ratio
increases dramatically

No externally visible progress anymore

Iterations stretched to 3 weeks

Staff turn-over increases

Project comes to a halt

Lots of code, no clear architecture, no obvious way forward

Gat’s Tech Debt
e o (more)
VICIOUS CyC|e Relentless

Pressure

Reduced
Development
Team
Velocity

Take
Technical
Debt

Fail to Pay
Technical back
Debt Accrues Technical
debt

Israel Gat, 2010

http://theagileexecutive.com/2010/09/20/how-to-break-the-vicious-cycle-of-technical-debt/

Value, Quality, Constraints

Value = extrinsic quality

— Metric: Net present
value

Quality = intrinsic
quality
— Metric: Technical debt

Constraints = cost,
schedule, scope

— Metric: Cost

Highsmith 2010

Evolution over time
A NPV

Key:
Z1=Get Well Zone

Z3=Pay Off Zone

|
|
|
|
|
Z2=Stabilization
E\ Zone
|
|
|
|
|
|

E Z1 Z2 Z3

TD
>Time

T4 T2 T3

Gat & Heintz, Cutter, 2010

© Israel Gat
© Cutter Consortium

22

Cognitive biases and TD

Escalation of commitment
— Aka, too much invested to quit

Sunk cost fallacy

— aka. throwing good money after
bad

* Anchoring

e Confirmatory bias

Timeline

oY 3 L
N
What is the debt? Intentional and strategic
Technical debt item description (5 >

Risk analysis, Development state analysis

How does debt accumulate?
Static and architecture analysis

When to pay back debt?
Architecture-focused release planning

Outline

What is technical debt?

The technical debt landscape
Limits of the metaphor

Managing technical debt

Tools and techniques

Friction in software development
Further research on technical debt

g

Tools and Techniques

Some examples

Tools for Technical Debt Analysis

* Vendors include
e CAST
* |nspearit
e SonarSource (Sonarqube)
* Thoughtworks
e Software Improvement Group (SIG)
* Lattix
* Hello2morrow
e Tocéa (Scertify)
» Xdepend
e Klocwork
* JetBrains

Real Option theory

Dependency Structure Matrix
— Propagation cost

Sonarqube
SQALE
Scertify

SQALE

 SQALE = Software Quality Assessment based
on Lifecycle Expectation

* Jean-Louis Letouzey and Thierry Coq
* |Inspearit

— (previously known as Det Norske Veritas France)

SQALE

Eourca \ Analysis tools
Code Y
b 4
= // \ = = .
e Quality Model L \\ eAnaIyms Models e Indices a Indicators
d Y

I —) 12 [3
I—
I— 5
| Source-code— g

SOUFCe 604e€ 4 :
- = Findings =
|_requirements | Table]
I——)
—_— 3
p— : 8
I—)
I —)
— 6
I —) 1
I—)

d./h./$...

« Right Code » Technical

Definition Debt

i it-2012
© inspearit-20 16

Quality model

An external view that
represents the perceived
quality evaluated by
consolidation of the
hierarchy of
characteristics

An analytic view provided
by orthogonal
characteristics Maintainability
One understands impact
of each Non-Conformity Efficiency
and improvement on
quality characteristic and
life cycle issues.

Testability

© inspearit-2012 21

Analysis tools

.Y, S onte

“Right Code”
Definition

© inspearit-2012

Findings
Table

Costs

Remediation
Costs

10 2

100

Non
Remediation
Costs

Technical
Debt

Business
Impact

Reduce business imapt

D
- O 100000
5 ©
<y 5 .
o BfF--te--emeeseeeee—-co §--—-mmmereee=—ee- - File
Ty B °© @ 8 ° - Component
7 = 2 Q e - Application
g ° 14 " °© o0 0
‘th C | 1000 (") Q 9
5 = i 5 9 /
m)
| ° 0 © 9
9 Q0
w8 @ ? ')
o © o @097
e %5 %000
Q @00
o® % ® Pooo0
! 01 10 100 1000 10000

Remediation Cost

© inspearit-2012 Technical Debt 2/

Maximize Rol

'
e 4-J 100000 /
O a3 !
© O !
Q. c]
£ O Il 9
; E 10000] q 9 ' 9
o f}
7)) O 8 ! 9 °
4 E oS / , @ 0 o
il S = o/ 0 0 o
=3 C /] o 9
O I Qo
(a8)] - /
Oll ° 9 9
. & 0 00
D X
° @ o g
/gde % 000
I e @00
10 -
J
Io° ¢ fo 000
]
]
J
! 0.'1 10 100 1000 10000

Remediation Cost

pearit-2012 Technical Debt

SonarQube

Java, C#,
VBNET, C/C++,
Objective-C,
Swift, PHP, JS,
CSS HTML,
Groovy, ABAP,
COBOL, ...

Code Analysis with

SonarQube Scanners
-— —

SonarQube Scanner

SonarQube Scanner for MSBuild

SonarQube Scanner for Maven
SonarQube Scanner for Ant
SonarQube Scanner for Gradle

_—

~-SonarQube Server

- ComputeEngine —
% =
35 =
)=
~SearchServer

%, elastic

- WebServer

+ SonarQube Plugins

Language Plugin
SCM Plugin
Integration Plugin
and more ...

Oracle

MysQL

~SonarQube Database 49—

‘ MS SQL

PostgreSQL

SonarQube

Java, C#,
VBNET, C/C++,
Objective-C,
Swift, PHP, JS,
CSS, HTML,
Groovy, ABAP,

COBOL, ...

®

Push to SCM
Local Analysis
using SonarQube
IDE Integration

(Visual Studio,
Eclipse, IntelliJ)

Software Configuration Management - SCM

@ git 9

mercurial
cvs Jazz RTC

TEVG ClearCase PERFORCE

-SonarQube Server

@ ll Continuous Inspection

i sonarqQube

Manage Issues

®

SonarQube Server is made of a WebServer (UI), a
SearchServer and a ComputeEngineServer

~SonarQube Database
Oracle

PostgreSQL

MySQL MS sQL

Automatic Build + Code Analysis

®

Continuous Integration Servers

Code Analysis @ M

using . | =R
SonarQube [- ||m.i
Scanners o g = < il)
{iBamboo M= il TG Teamcity

7
Publish Analysis Reports to SQ

10

eportlng

®/

SonarQube and SQALE

Medidas Evidencias Reglas de codificacion Perfiles de calidad UWibfales de Calidad

Helicopter View ALL PROJECTS ALL PROJECTS
Languages Panel
Activity SQALE Rating Technical Debt Lines of Code Tamafio: Lineas de c6digo Color: Cobertura 0.0% mm====100.0%
@]
I 43.432d 10,856K ==
_ CloudStack
Dependencias
Comparar Apache Isis|
: ALL PROJECTS A
N (Aggregato
sonarqube . .
Evidencias Deuda Técnica © Blogueante 4897 A
sonrasasenics || | 385148, 43432da @cwea 10 - mEE
for your project with ! ! ! OpenEJB o
@ Mayor 933,230 A N -
(2 © Menor 407462 2 N [Apal
CloudBees =
© Info 28010 A | EM E'.‘F -
CoRGES JBoss Application mm o A S
Server Parent POM jBPM | [Sprinfiel s B ISL 1S
| Apa e A o JEESSS "
K8 = B P e = s
- Dthers ()
© UBoss
© Sourceforge ALL PROJECTS
* Codehaus
o ow2 , ,
) _ Jan 01,2012 @ Lineas de cédigo: 9,478,101 @ Lineas duplicadas: 1,391,353
® Tests unitarios: 145,121
, © SpringSource
Lineas de cédigo oPs4l
p—
T T T T T 1
2010 201 2012 2013 2014

SonarQube™ technology is powered by SonarSource SA

SQALE-like dashboard with SonarQube

Releasability Reliability Security Maintainability
129 failing projects 200k bugs 32k vulnerabilities 66kd of technical debt
3 projects to C 6.7k blocker bugs to E 1.7k blocker vulnerabilities to E
Releasability Reliability Security Maintainability Lines of Code

(=1 ABAP Sample Project E 282 |
= abilian-core - - - - - |
= abilian-crm-core - - - - - |
= abilian-sbe - - - - - |
(=1 Activiti D| B 78k NN
(=1 AisLib application framework B 12k 11
(=] Ambrose 4.1k |
=1 Angular Dependency Injection v2 594 |
= AngularJS Failed B C 119k I

Structural level

* Dependency analysis
— Propagation cost

* [nterview the designers
— TD and its causes are in their heads

Dependency Structure Matrix

A B C

Strength of

B’s
A dependencyl

on A

Strength of Strength of

A’s C's
B dependency dependency
onB onB

Dependencies for MS-Lite

ssonsusiond [E EAEd B4 BA XXX
uasisiad eleq B X
saypiepy 5545l B4 BE4B4
ayoed [X
ssaoov erq |5 X X X
uoissas sos [EJ BB EAEd B4 X B
euep Ja)depy E x x x x
0SS3204d SNy ﬂ x x x
sapendn waio [B4 B4 X]X]
uofioT E x x
afieuep wiey H x x
aubuz wery B XX X
SIERY] o | X]X]

C (ol

28
30

C

= W W0 M~ O O O =
=1 ECN| B0 =]] =] o0l EOnl B B B = = e)
(= == ==l == === === === =
M wwwenwenownarn o Q0 00 0 90 0
SIS == === = =) o o <o o o o S e

Dependency Structure Matrix

Dependency [l] Suspect dependency (cycle)

[53 org.mortbay.jetty.deployer

[53 org.mortbay.jetty.webapp

[org.mortbay.xml

[57 org.mortbay.jetty.serviet

[53 org.mortbay.jetty.nio

[53 org.mortbay.jetty.security

[53 org.mortbay.jetty.handler

[org.mortbay.jetty.bio

[53 org.mortbay.io.nio

53 org.mortbay.jetty

[53J org.mortbay.resource

[53 org.mortbay.io.bio

53 org.mortbay.io

3
12

13

31

W
'
(= o)~ J &

28 48 6 2 | -

4 2 4 -

1 1 -
1 2 3 8 61 2

$root n | w oo - oo b ER|lGR
[=1-|[+)- Jetty 1 78 |301 17 (484 21|19 (599| 5 | 2 | 5 |24 (30
_§ E [+]- org.mortbay.component 2 1% | 4 4
3 g_r I -org.mortbay.log 3 2% 4
;'," * |[+]- org.mortbay.serviet 4 6 22
J uses > [l -uses > 5 34| |
5] 8 2 |12%
7 A
s =
9 7, 6%
10 12 1.0%
11 22 5% 6
- 12 10 A%
- 13 9 4 11|86 6 7% |16
14 4 |5 20 4 6 [1%

Dependencies in Release Planning

1 Mary and Tom Poppendieck — “Leading Lean Software Development”

2 Mark Denne, Jane Cleland-Huand — “Software by Numbers”

Propagation cost

* “Density” of the DSM

— Proposed by McCormack et al. in 2006
— Several limitations as a tool to measure T.D.

* Improved PC:

— Boolean to continuous value (=dependency
“strength”)

— Changes not uniformly spread throughout the
code

— Less sensitive to size of code

McCormack et al. 2006

So Technical debt...

... It's messy

Cannot isolate or tokenize

— Lots of dependencies

Cannot assess easily

— Cost and value dependent on future evolution
Polymorphic

— Good & bad, costly and beneficial, harmful and
INnnOCUouUs

g

Practical steps

From tactical (and simple) to more
strategic (and sophisticated)

* Tactical
— Short-term actions - limited scope

— Actual means: tools, process steps, immiedate
plan

* Strategic
— Long-term plan- wider scope
— Process, management, education
— Drive some of the tactical actions above

Practical steps (1) - Awareness

* Organize a lunch-and-learn with your team to
introduce the concept of technical debt. lllustrate
it with examples from your own projects, if
possible.

* Create a category “TechDebt” in your issue
tracking system, distinct from defects, or new
features. Point at the specific artifacts involved.

e Standardize on one single form of “Fix me” or
“Fix me later” comment in the source code to
mark places that should be revised and improved
later. They will be easier to spot with a tool.

Practical steps (2) - Identification

* Acquire and deploy in your development
environment a static code analyser to detect
code-level “code smells”. (Do not panic in front
of the large number of positive warnings).

* After some “triage” feed them in the issue
tracking system, in the tech debt category

e At each development cycle (iteration), reduce
some of the technical debt by explicitly bringing
some tech debt items into your iteration or sprint
backlog.

Practical steps (3) - Evaluation

* Foridentified tech debt items, give not only estimates
of the cost to “reimburse” them or refactor them (in
staff effort), but also estimate of the cost to not
reimburse them: how much it drags the progress now.
At least describe qualitatively the impact on
productivity or quality. This can be assisted by tools
from your development environment, to look at code
churn, and effort spent.

* Prioritize technical debt items to fix or refactor, by
doing them first in the parts of your code that are the
most actively modified, leaving aside or for later the
parts that are never touched.

Practical Steps (4) Architectural debt

e Refine in your issue tracker the TechDebt category into 2
subcategories: simple, localized, code-level debt, and wide
ranging, structural or architectural debt.

* Acquire and deploy a tool that will give you hints about
structural issues in your code: dependency analysis

e QOrganize small 1-hour brainstorming sessions around the
question: “What design decision did we make in the past
that we regret now because it is costing us much?” or “If
we had to do it again, what should have we done?”

— This is not a blame game, or a whining session; just identify high
level structural issues, the key design decisions from the past
that have turned to technical debt today.

Practical steps (5) — Process
iImprovements

* For your major kinds of technical debt, identify the
root cause —schedule pressure, process or lack of
process, people availability or turn over, knowledge or
lack of knowledge, tool or lack of tool, change of
strategy or objectives— and plan specific actions to
address these root causes, or mitigate their effect.

* Develop an approach for systematic regression testing,
so that fixing technical debt items does not run you in
the risk of breaking the code.

— Counter the “It is not really broken, so | won’t fix it.”

* |f you are actively managing risks, consider bringing
some major tech debt items in your list of risks.

@ References

® Brown, N., Cai, Y., Guo, Y., Kazman, R., Kim, M., Kruchten, P., et al. (2010). Managing
Technical Debt in Software-Intensive Systems. Paper presented at the Future of software
engineering research (FOSER) workshop, part of Foundations of Software Engineering (FSE
2010) conference.

® Brown, N., Nord, R., Ozkaya, I., Kruchten, P., & Lim, E. (2011). Hard Choice: A game for
balancing strategy for agility. Paper presented at the 24th IEEE CS Conference on Software
Engineering Education and Training (CSEE&T 2011), Honolulu, HI, USA.

® Cunningham, W. (1992). The WyCash Portfolio Management System. Paper presented at the
OOPSLA'92 conference, ACM. Retrieved from http://c2.com/doc/oopsla92.html

® Curtis, B., Sappidi, J., & Szynkarski, A. (2012). Estimating the Principal of an Application’s
Technical Debt. IEEE Software, 29(6).

" Denne, M., & Cleland-Huang, J. (2004). Software by Numbers: Low-Risk, High-Return
Development, Prentice Hall.

" Denne, M., & Cleland-Huang, J. (2004). The Incremental Funding Method: Data-Driven
Software Development, IEEE Software, 21(3), 39-47.

" Fowler, M. (2009), Technical debt quadrant, Blog post at:
http://www.martinfowler.com/bliki/TechnicalDebtQuadrant.html

" Gat, . (ed.). (2010). How to settle your technical debt--a manager's guide. Arlington Mass:
Cutter Consortium.

® Kruchten, Ph. (2010) Contextualizing Agile Software Development,” Paper presented at the
EuroSPIl 2010 conference in Grenoble, Sept.1-3, 2010

References

Kruchten, P., Nord, R., & Ozkaya, |. (2012). Technical debt: from metaphor to theory and practice.
IEEE Software, 29(6).

Kruchten, P., Nord, R., Ozkaya, I., & Visser, J. (2012). Technical Debt in Software Development: from
Metaphor to Theory--Report on the Third International Workshop on Managing Technical Debt,
held at ICSE 2012 ACM SIGSOFT Software Engineering Notes, 37(5).

Li, Z., Madhaviji, N., Murtaza, S., Gittens, M., Miranskyy, A., Godwin, D., & Cialini, E. (2011).
Characteristics of multiple-component defects and architectural hotspots: a large system case
study. Empirical Software Engineering, 16(5), 667-702. doi: 10.1007/s10664-011-9155-y

Lim, E. (2012). Technical Debt: What Software Practitioners Have to Say. (Master's thesis),
University of British Columbia, Vancouver, Canada.

Lim, E., Taksande, N., & Seaman, C. B. (2012). A Balancing Act: What Software Practitioners Have to
Say about Technical Debt. IEEE Software, 29(6).

MacCormack, A., Rusnak, J., & Baldwin, C. Y. (2006). Exploring the structure of complex software
designs: An empirical study of open source and proprietary code. Management Science, 52(7),
1015-1030.

Nord, R., Ozkaya, I., Kruchten, P., & Gonzalez, M. (2012). In search of a metric for managing
architectural technical debt. Paper presented at the Working IEEE/IFIP Conference on Software
Architecture (WICSA 2012), Helsinki, Finland.

McConnell, S. (2007) Notes on Technical Debt, Blog post at: http://blogs.construx.com/blogs/
stevemcc/archive/2007/11/01/technical-debt-2.aspx

Special issue of Cutter IT Journal on Technical Debt, edited by I. Gat (October 2010) Cutter IT
Journal, 23 (10).

Sterling, C. (2010) Managing Software Debt, Addison-Wesley.

@ References (cont.)

® R.O.Spinola, N. Zazworka, A. Vetro, C. B. Seaman, and F. Shull, "Investigating Technical Debt
Folklore: Shedding Some Light on Technical Debt Opinion," in Proceedings of the 4th
Workshop on Managing Technical Debt, at ICSE 2013, P. Kruchten, |. Ozkaya, and R. Nord,
Eds., IEEE, 2013.

® K. Schmid, "On the Limits of the Technical Debt Metaphor," in Proceedings of the 4th
Workshop on Managing Technical Debt, at ICSE 2013, P. Kruchten, |. Ozkaya, and R. Nord,
Eds., IEEE, 2013, pp. 63-66.

® K. Schmid, "A Formal Approach to Technical Debt Decision Making," in Proceedings of the
Conference on Quality of Software Architecture QoSA'2013, Vancouver, 2013, ACM.

® Avgeriou, P., Kruchten, P., Ozkaya, I., & Seaman, C. (eds) “Managing Technical Debt in
Software Engineering (Dagstuhl Seminar 16162)”. Dagstuhl Reports (Vol. 6, issue 4 pp.
110-138). Dagstuhl, Germany: Schloss Dagstuhl--Leibniz-Zentrum fir Informatik.

Other sources (Talks/slides)

Gat, I., Heintz, J. (Aug. 19, 2010) Webinar: Reining in Technical Debt,
Cutter Consortium.

McConnell, S. (October 2011) Managing technical debt. (Webinar)

Kniberg, H. (2008) Technical debt-How not to ignore it, at Agile 2008
conference.

Kruchten, P. (2009) What colour is your backlog? Agile Vancouver
Conference. http://philippe.kruchten.com/talks

Sterling, C. (2009) http://www.slideshare.net/csterwa/managing-
software-debt-pnsqc-2009

Short, G. (2009) http://www.slideshare.net/garyshort/technical-
debt-2985889

West, D. (January 2011), Balancing agility and technical debt, Forrester &

Cast Software

Other sources

e Slides on Sonar, from Olivier Gaudin, CEO of Sonarqube
e Slides on SQALE from Jean-Louis Letouzey, Inspearit

* Slides on DSM from Ipek Ozkaya and Robert Nord, SE/

g

Conceptual model of
Technical debt

Context

T

Continuance

BusinessGoal FeatureSet 1..* | Feature
e e —

+affects

o +de%nds on

+associatedWith

0.*

1 0.*
+has
1 1.*
Technical Debt . TD Item
+isCausIBy
Cause

— " T

Decision

Schedule

Process

Other

-

e

Costimpact

Valuelmpact

Schedulelmpact

Qualitylmpact

DevelopmentArtifact

RN

Code

Test

Docs

Defect

