Technical Debt January 2014

SGm

Como reducir la friccion en
el desarrollo de software

Philippe Kruchten
Mexico, June 26, 2014

SGm

Reducing Friction in
Software Development

Philippe Kruchten
Mexico, June 26, 2014

Copyright © 2014 by Philippe Kruchten 1

Technical Debt January 2014

Philippe Kruchten, rh.o., p.eng, csop

Professor of Software Engineering
NSERC Chair in Design Engineering

Department of Electrical and Computer Engineering
University of British Columbia
Vancouver, BC Canada
pbk@ece.ubc.ca

Founder and president

Kruchten Engineering Services Ltd
Vancouver, BC Canada
philippe@kruchten.com

Copyright © 2014 Philippe Kruchten 3

Friction

]
B
“There is still much friction in the process of
crafting complex software; the goal of creating
quality software in a repeatable and sustainable
manner remains elusive to many organizations,

especially those who are driven to develop in
Internet time.”

Grady Booch’s keynote at
ICSE 2000 in Limerick, Ireland

Copyright © 2014 Philippe Kruchten

Copyright © 2014 by Philippe Kruchten 2

Technical Debt

i L
.. Friction

Motion
“Friction: the resistance that
one surface or object encounters Fricioi

when moving over another.”

In software development, friction is the set of
phenomena that limits or constraints our progress,
therefore reduces our velocity (or productivity).

Technical debt causes friction.

Copyright © 2014 Philippe Kruchten

Friction and Debt =.

Technical Debt

t:> Friction
Reduced velocity

Social Debt
Defects
Delays

Copyright © 2014 Philippe Kruchten

January 2014

Copyright © 2014 by Philippe Kruchten

Technical Debt January 2014

Outline -

What is technical debt?
The technical debt landscape

Causes of technical debt
— Cost vs. value

Limits of the metaphor
Tackling Technical debt

Friction in software development

Copyright © 2014 Philippe Kruchten 8

=- Technical Debt

Concept introduced by Ward Cunningham

Often mentioned, rarely studied

All experienced software developers “feel” it.

Drags long-lived projects and products down

Copyright © 2014 Philippe Kruchten 9

Copyright © 2014 by Philippe Kruchten 4

Technical Debt

Origin of the metaphor

* Ward Cunningham, at OOPSLA 1992

“Shipping first time code is like going 3
into debt. A little debt speeds development
so long as it is paid back promptly with a
rewrite...

The danger occurs when the debt is not '
repaid. Every minute spent on not-quite-right code
counts as interest on that debt. Entire engineering
organizations can be brought to a stand-still under the
debt load of an unconsolidated implementation,
object-oriented or otherwise.”

Cunningham, OOPSLA 1992

Copyright © 2014 Philippe Kruchten 10

Technical Debt (S. McConnell)

* Implemented features (visible and
invisible) = assets = non-debt

* Type 1: unintentional, non-strategic;
poor design decisions, poor coding

e Type 2: intentional and strategic:
optimize for the present, not for the
future.

— 2.A short-term: paid off quickly (refactorings, etc.)
* Large chunks: easy to track
* Many small bits: cannot track

— 2.Blong-term

McConnell 2007

Copyright © 2014 Philippe Kruchten 11

Copyright © 2014 by Philippe Kruchten

January 2014

Technical Debt

Technical Debt Definition (2013)

* A design or construction approach
that is expedient in the short
term, but that creates a technical
context in which the same work
will cost more to do later than it

would cost to do now (including
increased cost over time).

McConnell 2013

Copyright © 2014 Philippe Kruchten 12

Technical Debt (M. Fowler)

Reckless Prudent
“We don’t have time “We must ship now
for design” and deal with
consequences”
Deliberate
Inadvertent
v , - “Now we know how we
What’s Layering: should have done it”
Fowler 2009, 2010

Copyright © 2014 Philippe Kruchten 13

Copyright © 2014 by Philippe Kruchten

January 2014

Technical Debt

Exam P le underestimated
re-architecting costs
First more capabilities hen, more infrastructure
= e]
: Ed

: A

eed to monitor technical

debt to gain insight into
life-cycle efficiency

neglected cost of delay
to market

First more infrastructure Then, more capabilities
OZkaya, SE|,2010 Copyright © 2014 Philippe Kruchten 14

Technical Debt (Chris Sterling)

* Technical Debt: issues found in the code
that will affect future development but
not

those dealing with feature completeness.
Or

* Technical Debt is the decay of
component and intercomponent
behaviour when the application
functionality meets a minimum
standard of satisfaction for the
customer.

Copyright © 2014 Philippe Kruchten 15

Copyright © 2014 by Philippe Kruchten

January 2014

Technical Debt January 2014

Time is Money (l. Gat)

e Convert this in monetary terms:

“Think of the amount of money the
borrowed time represents — the
grand total required to eliminate
all issues found in the code”

Gat 2010

Copyright © 2014 Philippe Kruchten 16

Example: TD is the sum of...

* Code smells 167 person days
* Missing tests 298 person days
* Design 670 person days

Documentation 67 person days

Totals
Work 1,202 person x days
Cost $577,000

Copyright © 2014 Philippe Kruchten 17

Copyright © 2014 by Philippe Kruchten 8

Technical Debt January 2014

Tech Debt (Jim Highsmith)

m Once on far right of curve, all

Customer .
choices are hard

Responsiveness

m If nothing is done, it just gets
worse

m In applications with high
technical debt, estimating is

Product Technical Debt nearly impossible

R'elease
H

Cost of Change (CoC)

-
_. — ~ Optimal CoC m Only 3 strategies
f—— - » . .
12345678 1. Do nothing, it gets worse
Years 2. Replace, high cost/risk
3. Incremental refactoring,
commitment to invest

Copyright © 2014 Philippe Kruchten Source: nghsmlthr 200918

Value, Quality, Constraints

* Value = extrinsic quality

— Metric: Net present
value

* Quality = intrinsic
quality
— Metric: Technical debt
* Constraints = cost,
schedule, scope
— Metric: Cost

Highsmith 2010
Copyright © 2014 Philippe Kruchten 19

Copyright © 2014 by Philippe Kruchten 9

Technical Debt

State of affairs

* Opinions, posturing, proclamations
* Little objective facts

“...there is a plethora of attention-grabbing
pronouncements in cyberspace that have not
been evaluated before they were published,
often reflecting the authors’ guesses and
experience on the subject of Technical Debt.”

Spinola et al. 2013

Copyright © 2014 Philippe Kruchten 20

Outline -

What is technical debt?

The technical debt landscape <:

Causes of technical debt

— Cost vs. value

Limits of the metaphor
Tackling Technical debt
Friction in software development

Copyright © 2014 Philippe Kruchten 21

Copyright © 2014 by Philippe Kruchten

January 2014

10

Technical Debt

architecture

New features

Additional functionalit Structural debt

Technological gap

Documentation debt

code

Architectural debt ~ Low internal quality

Code smells

Code complexity
Test debt Coding style violations

Technical debt landscape

m Mostly invisible Visible

Defects
Low external quality

Copyright © 2014 Philippe Kruchten

< Evolution issues: evolvability > < Quality issues: maintainability >

Kruchten et al 2012

22

QOutline

What is technical debt?
The technical debt landscape

— Cost vs. value

Limits of the metaphor
Tackling Technical debt
Friction in software developm

Copyright © 2014 Philippe Kruchten

ent

Causes of technical debt <:

23

Copyright © 2014 by Philippe Kruchten

January 2014

11

Technical Debt

Causes of Technical Debt

TECHNOLOGY

+ Technology limitations
* Legacy code

+ COTS

» Changes in technology
* Project maturity

PROCESS

- Little consideration of code maintenance
* Unclear requirements

« Cutting back on process (code reviews)
« Little or no history of design decisions

» Not knowing or adopting best practices

PEOPLE

* Postpone work until needed

» Making bad assumptions

* Inexperience

* Poor leadership/team dynamics

* No push-back against customers

* “Superstars” — egos get in the way
» Little knowledge transfer

» Know-how to safely change code
* Subcontractors

PRODUCT

- Schedule and budget constraints

» Poor communication between
developers and management

» Changing priorities (market information)

* Lack of vision, plan, strategy

 Unclear goals, objectives and priorities

* Trying to make every customer happy

» Consequences of decisions not clear

Lim et al. 2012

Copyright © 2014 Philippe Kruchten 24

Reduced
Development
Team
Velocity

Technical
Debt Accrues

Israel Gat, 2010

(more)

Relentless
Pressure

Take
Technical
Debt

Fail to Pay
back
Technical
debt

http://theagileexecutive.com/2010/09/20/how-to-break-the-vicious-cycle-of-technical-debt/
Copyright © 2014 Philippe Kruchten 25

Copyright © 2014 by Philippe Kruchten

January 2014

12

Technical Debt

Copyright © 2014 by Philippe Kruchten

Tensions / Factors to Consider

* Engineers don’t like technical debt
they want to be technically flawless

* Project managers or business people don’t mind

technical debt
they want to capture market share

* However, tolerance for TD changes over the
system lifetime of the system

Copyright © 2014 Philippe Kruchten

Lim et al. 2012

26

.\@Frog: “All projects are the same”

Intent Product
Time Time
Quality Quality
Risk Value Risk Value
Work People
Time Time
Quality Quality
Risk Cost Risk Cost

Copyright © 2014 Philippe Kruchten

27

January 2014

13

Technical Debt

% Octopus: “All projects are different!”

Domain,
Industry

Degree of
Innovation

Rate of
GELT Context

Gover
nance
National Culture

Business
model

architec
= ture
distribu
tion

Copyright © 2014 Philippe Kruchten 28

Corporate & Organizational

Maturity

“@ A project is all the work that people have to
accomplish over time to realize in a product

some specific intent, at some level of quality,
delivering value to the business at a given cost,
while resolving many uncertainties and risk.

% %) All aspects of software projects are affected by
context: size, criticality, team distribution, pre-
existence of an architecture, governance,
business model, which will guide with practices
will actually perform best, within a certain
domain and culture.

Copyright © 2014 Philippe Kruchten 29

Copyright © 2014 by Philippe Kruchten

January 2014

14

Technical Debt

Value and Cost

* Value: to the business (the users, the customers,
the public, etc.)

e Cost: to design, develop, manufacture, deploy,
maintain

e Simple system, stable architecture, many small
features:

— Roughly, value aligns to cost

* Large, complex, novel systems ?
— Not quite so

Copyright © 2014 Philippe Kruchten 30

4 Value

Cost

Intent Product

Time L I Time

Quality Quality

\ Risk Risk
/ Work People

Time L | Time

Quality Quality

Risk Risk

Copyright © 2014 Philippe Kruchten

Copyright © 2014 by Philippe Kruchten

January 2014

15

Technical Debt

What’s in your backlog?

Visible Invisible

(AR Z58 Architectural,
| Added Structural
Value functionality R{=E1UES

Positive

Negative Technical
Value Debt

Copyright © 2014 Philippe Kruchten 32

TD: negative value, invisible

Visible Invisible

(AR ES58 Architectural,

Positive
Added Structural
Value functionality :
Negative Technical
Value Debt

Copyright © 2014 Philippe Kruchten 33

Copyright © 2014 by Philippe Kruchten

January 2014

16

Technical Debt

Technical Debt (1)

$15 St 10 Bt
=)
$5 $3

Ca $5 Cb $3

s s

$25 $27

Copyright © 2014 Philippe Kruchten

$20 $19 $18
Technical Debt (2)
12 B4 12 B3 12 Bk

35

Copyright © 2014 by Philippe Kruchten

January 2014

17

Technical Debt

Technical Debt (3)

s18 = [EEHY +s2
Ca $5

Bl -

El - N ss
J

: Y
Copyright © 2014 Philippe Kruchten 36
(more)
Relentless
Pressure
Reduced
Take
Development .
Technical
Team
. Debt
Velocity
Fail to Pay
Technical back
Debt Accrues Technical
debt
Israel Gat, 2010
http://theagileexecutive.com/2010/09/20/how-to-break-the-vicious-cycle-of-technical-debt/
Copyright © 2014 Philippe Kruchten 37

Copyright © 2014 by Philippe Kruchten

January 2014

18

Technical Debt

Technical Debt

» Defect = Visible feature with negative value

negative value

— Cost of fixing

of productivity, etc.

Copyright © 2014 Philippe Kruchten

* Technical debt = Invisible feature with

— Value of repaying technical debt, interests loss

38

Interests

* In presence of technical debt,
cost of adding new features is higher;
velocity is lower.

cost, forever

Copyright © 2014 Philippe Kruchten

* When repaying (fixing), additional cost for
retrofitting already implemented features

* Technical debt not repaid => lead to increased

* Cost of fixing (repaying) increases over time

M. Fowler, 2009

39

Copyright © 2014 by Philippe Kruchten

January 2014

19

Technical Debt

TD litmus test

 If you are not incurring any interest, then it
probably is not a debt

Copyright © 2014 Philippe Kruchten

McConnell 2013

40

Deferring implementation:
Value decreases

R1 R2 R3

R4

& 6 S &3

Time

Copyright © 2014 Philippe Kruchten

41

Copyright © 2014 by Philippe Kruchten

January 2014

20

Technical Debt January 2014

But technical debt increases over
time

R1 R2 R3 R4

- =

Time

Copyright © 2014 Philippe Kruchten 42

QOutline

What is technical debt?
The technical debt landscape

Causes of technical debt
— Cost vs. value

Limits of the metaphor <:

Tackling Technical debt

Friction in software development

Copyright © 2014 Philippe Kruchten 43

Copyright © 2014 by Philippe Kruchten 21

Technical Debt January 2014

Tech Debt (mis)-conceptions

* Technical debt reifies an abstract concept
* Technical debt does not equate to bad quality

* Technical debt can be induces by a shift in
context

» Defects are not technical debt
* Lack of progress is not technical debt

* New features yet to be implemented is not
technical debt

Copyright © 2014 Philippe Kruchten 44

. It’s only a Metaphor!

* Metaphors give meaning to form, help ground
our conceptual systems.

* Cognitive transfer: source domain to target
domain

— the <target> is the <source>

Lakoff and Johnson (1980) Metaphors we live by

* Do not push any metaphor too far....

Copyright © 2014 Philippe Kruchten 45

Copyright © 2014 by Philippe Kruchten 22

Technical Debt January 2014

Where the metaphor breaks

* Technical debt does not always have to be
repaid

* What does it mean to be “debt free”?
— TD has a large part of subjectivity

* Negative connotation

* May increase the value of a project for a time

e Tech Debt as Investment?

Where the metaphor breaks

* |nitial investment at TO in an environment EO.
Now in T2, E has changed to E2, a mismatch
has occurred, which creates a debt.

— The debt is created by the change of environment.

The right decision in the right environment at
some time may lead to technical debt.

* Prudent, inadvertent

Copyright © 2014 by Philippe Kruchten 23

Technical Debt

Where the metaphor breaks...

Technical debt depends on the future

Technical debt cannot be measured

You can walk away from technical debt

Technical debt should not be completely
eliminated

Technical debt cannot be handled in isolation

Technical debt can be a wise investment

Copyright © 2014 Philippe Kruchten 48

Real Options Theory

* Often mentioned, but rarely put in application
in software

Copyright © 2014 Philippe Kruchten 49

Copyright © 2014 by Philippe Kruchten

January 2014

24

Technical Debt

TD and Real Options

Market loves it

+$4M
2M Q,,o-‘°
Pii Sy w1 S,

,O\\o
Xy Market hates it

+S1M
NPV (P;) = -2M + 0.5x4M + 0.5x1M = 0.5M
Source: K. Sullivan, 2010

at TD Workshop SEI 6/2-3

Copyright © 2014 Philippe Kruchten 50

TD and Real Options (2)

-1M
/ Market loves itwm==3p S, +4M
-IM 0°

Py Sy m S, ¢

,O\\o
Xy Market hates it

+S1M

NPV (P,) = -1M + 0.5x3M + 0.5x1M = 1M

Taking Technical Debt has increased system value. Source: K. Sullivan, 2010

Copyright © 2014 Philippe Kruchten 51

Copyright © 2014 by Philippe Kruchten

January 2014

25

Technical Debt

TD and Real Options (3)

Take Debt

-1.5M
/Market loves itmmm——=p S, +4M
-IM o8

Py Sy w2 S, ©
Repay debt
oy
8 Market hates it

+S1M

NPV (P,) =-1M +0.67 x 2.5M + 0.33 x 1M = 1M

More realistically:
Debt + interest

High chances of success
Copyright © 2014 Philippe Kruchten

52

TD and Real Options (3)

Higher chance
of success

-1.5M
Market loves itwmm==3p S, +4M

-IM o8
P, S —_— Sy Q
PN Repay debt +
0'5(9 Market hates it 50% interest

+S1M

NPV (P,) =-1M +0.67 x 2.5M + 0.33 x 1M = 1M

More realistically:
Debt + interest

High chances of success
Copyright © 2014 Philippe Kruchten

53

Copyright © 2014 by Philippe Kruchten

January 2014

26

Technical Debt January 2014

TD and Real Options (4)

Add feature
S S,

/ N

Favourable 4,

?
Y
\”e
S >
2d .

/
o

,O\\’)

So > S

Unfavourable

Not debt really, but options with different values...
Do we want to invest in architecture, in test, etc...

Source: K. Sullivan, 2010

Copyright © 2014 Philippe Kruchten 54

Options Theory

* Often mentioned, but rarely put in application
in software

* Not even scratched the surface
* Pay-off not obvious, though...

— Too much guesswork involved to trust results,
— Lot of work involved

Copyright © 2014 Philippe Kruchten 55

Copyright © 2014 by Philippe Kruchten 27

Technical Debt January 2014

Potential vs. actual debt

e Potential debt

— Type 1:0K to do with tools (see Gat & co.
approach)

— Type 2: structural, architectural, or technological
gap: Much harder

e Actual debt
— When you know the way forward

K.Schmid 2013

Copyright © 2014 Philippe Kruchten 56

Outline -

What is technical debt?
The technical debt landscape

Causes of technical debt
— Cost vs. value

Limits of the metaphor

Tackling Technical debt <:

Friction in software development

Copyright © 2014 Philippe Kruchten 57

Copyright © 2014 by Philippe Kruchten 28

Technical Debt

g

How do people “tackle”
technical debt

Tackling Technical Debt

Attitudes and approaches found:
Ignorance is bliss

The elephant in the room

Big scary $SSS numbers

Five star ranking

Constant reduction

o vk wnNeE

We're agile, so we are immune!

Copyright © 2014 Philippe Kruchten

Copyright © 2014 by Philippe Kruchten

January 2014

29

Technical Debt

lgnorance is bliss

You’re just slower, and slower, but you do not
know it, or do not know why

Velocity accumulated technical debt
impacts ability to deliver

~

B
5]

Functional requirement delivered

|-
i
E

Iterations

Copyright © 2014 Philippe Kruchten 60

The elephant in the room

Many in the org. know
about technical tech.

Indifference: it’s
someone else’s problerr

Organization broken
down in small silos

No real whole product
mentality

Short-term focus

“Tm right there in the room, and no one even acknowledges me.”

The New_Vorker, 9/18/06

Copyright © 2014 Philippe Kruchten 61

Copyright © 2014 by Philippe Kruchten

January 2014

30

Technical Debt

Big scary SSSS numbers

* Code smells 167 person days
* Missing test 298 person days
* Design 670 person days

Documentation 67 person days

Totals
Work 1,202 person x days
Cost S$577,000

Copyright © 2014 Philippe Kruchten

Static analysis + Consulting

* Cutter Consortium: Gat, et al.

— Use of Sonar, etc.

— Focused on code analysis

— TD = total value of fixing the code base
e CAST software

* ThoughtWorks

Debt analysis engagements
Debt reduction engagements

Copyright © 2014 Philippe Kruchten

Copyright © 2014 by Philippe Kruchten

January 2014

31

Technical Debt

Issues .

* Fits the metaphor, indeed.
* Looks very objective... but...
* Subjective in:

— What is counted

— What tool to use
— Cost to fix

Not all fixes have the same resulting value.
Sunk cost are irrelevant, look into the future only.
What does it mean to be “Debt free”??

Copyright © 2014 Philippe Kruchten 64

. Five star ranking

* Define some maintainability index

* Benchmark relative to other software in the same
category

* Re-assess regularly (e.g., weekly)

* Look at trends, correlate changes with recent
changes in code base

* SIG (Software Improvement Group), Amsterdam

* Powerful tool behind

Copyright © 2014 Philippe Kruchten 65

Copyright © 2014 by Philippe Kruchten

January 2014

32

Technical Debt

Constant debt reduction

* Make technical debt a visible item on the
backlog

* Make it visible outside of the software deuv.
organization

* Incorporate debt reduction as a regular
activity

* Use buffer in longer term planning for yet
unidentified technical debt

e Lie (?)

Copyright © 2014 Philippe Kruchten 66

Buffer for debt repayment

Debt

Defect Repayment

. correction
Estimate

Simple work uncertainties

Copyright © 2014 Philippe Kruchten 67

Copyright © 2014 by Philippe Kruchten

January 2014

33

Technical Debt

A later release

Copyright © 2014 Philippe Kruchten

We are agile, so we’re immune!

In some cases we are agile and therefore we run faster into technical debt

Copyright © 2014 Philippe Kruchten

69

Copyright © 2014 by Philippe Kruchten

January 2014

34

Technical Debt January 2014

Agile mottos

» “Defer decision to the last responsible moment”

* “YAGNI” = You Ain’t Gonna Need It
— But when you do, it is technical debt

— Technical debt often is the accumulation of too many
YAGNI decisions

* “We’ll refactor this later”
* “Deliver value, early”

* Again the tension between the yellow stuff and
the green stuff

* You’re still agile because you aren’t slowed down
by TD yEt' Copyright © 2014 Philippe Kruchten 70

Story of a failure

* Large re-engineering of
a complex distributed
world-wide system;
2 millions LOCin C,
C++, Cobol and VB

* Multiple sites, dozens of data repositories, hundreds
of users, 24 hours operation, mission-critical
(Sbillions)

* xP+Scrum, 1-week iterations, 30 then up to 50
developers

* Rapid progress, early success, features are demo-able
* Direct access to “customer”, etc.
» A poster project for scalable agile development

Copyright © 2014 Philippe Kruchten 71

Copyright © 2014 by Philippe Kruchten 35

Technical Debt

Hitting the wall

e After 4 % months, difficulties
to keep with the 1-week
iterations

* Refactoring takes longer
than one iteration

* Scrap and rework ratio
increases dramatically

* No externally visible progress anymore

* Iterations stretched to 3 weeks

» Staff turn-over increases

* Project comes to a halt

* Lots of code, no clear architecture, no obvious way forward

Copyright © 2014 Philippe Kruchten

72

| © ONL \/ VAC 1\;{ e 4*‘*‘(17&,/\({’()7 Men T

OF Code Quaciry: WTFs/mivute

xh"‘
¥, .
Wi-F ﬂ WIF lf/gf /s

| o\ | e

) |
o
code o, A
REVieW Pa -
Wrg
L -

BAd codle.

(c) 2008 Focus Shift

Copyright © 2014 by Philippe Kruchten

January 2014

36

Technical Debt

Managing TD...

Identify sources of TD

Locate TD

— Not easy for McConnell type 2
Quantify TD

— Principal, Interest

Define actions

— Priorities

— Tooling

* Assessment

Copyright © 2014 Philippe Kruchten 74

% Octopus: “All projects are different!”

Domain, Age of Degree of

Industry the Innovation
system

Rate of
change

Business

Context model

Stable
architec o
Corporate & — ture Organizational

National Culture distribu Maturity

tion

Copyright © 2014 Philippe Kruchten 75

Copyright © 2014 by Philippe Kruchten

January 2014

37

Technical Debt January 2014

Debt at the Architectural level

* Design Structure Matrix (DSM)
— a.k.a, Dependency Structure Matrix

e Domain Mapping Matrix (DMM)

* Tools to create and manipulate DSMs and
DMMs

Copyright © 2014 Philippe Kruchten 76

QOutline

What is technical debt?
The technical debt landscape

Causes of technical debt
— Cost vs. value

Limits of the metaphor
Tackling Technical debt

Friction in software development <:

Copyright © 2014 Philippe Kruchten 77

Copyright © 2014 by Philippe Kruchten 38

Technical Debt

=. Friction

Motion
“Friction: the resistance that
one surface or object encounters Fricioi
when moving over another.”

In software development, friction is the set of
phenomena that limits or constraints our progress,
therefore reduces our velocity (or productivity).

Technical debt causes friction.

Copyright © 2014 Philippe Kruchten 78

Friction and Debt =.

Technical Debt

t:> Friction
Social Debt Reduced velocity
Defects

Delays

Copyright © 2014 Philippe Kruchten 79

Copyright © 2014 by Philippe Kruchten

January 2014

39

Technical Debt January 2014

Social debt =.

* Social debt is a state of a development project
which is the result of the accumulation over
time of decisions about the way the
development team (or community)
communicates, collaborates and coordinates.

Tamburri et al. 2013

Copyright © 2014 Philippe Kruchten 80

Social debt =.

* |In other words, decisions about :
— the organizational structure,
— the process,
— the governance,
— the social interactions,
e or some elements inherited through the
people:

— their knowledge, personality, working style, etc.

Tamburri et al. 2013
81

Copyright © 2014 Philippe Kruchten

Copyright © 2014 by Philippe Kruchten 40

Technical Debt

Parallel Technical & Social Debt

Visible Invisible

(AR Z58 Architectural,
| Added Structural
Value functionality R{=E1UES

Positive

Negative Technical
Value Debt

Copyright © 2014 Philippe Kruchten 82

Social debt

Visible Invisible

Community Community

Positive
Features Structure
Value
Value Debt

Tamburri et al. 2013

Copyright © 2014 Philippe Kruchten 83

Copyright © 2014 by Philippe Kruchten

January 2014

41

Technical Debt

A

Architecture of

the System
/ \
Structure of the Production
Development Organization Infrastructure

S 4 » P

Socio-technical congruence

A

Architecture of
the System

Socio-technical
congruence
\
Structure of the Production
Development Organization Infrastructure

S 4 » P

Copyright © 2014 by Philippe Kruchten

January 2014

42

Technical Debt January 2014

DevOps: Development+Operations

A

Architecture of
the System

Structure of the DevOps Production
Development Organization Infrastructure

S 4 » P

@ Conclusion

* Technical debt is still more a rhetorical
category than a technical or ontological
category.

* The concept resonates well with the
development community, and sometimes also
with management.

* It bridges the gap between business decision
makers and technical implementers.

* It’s only a metaphor; do not push it too far.
* It’s not all bad.

Copyright © 2014 Philippe Kruchten 87

Copyright © 2014 by Philippe Kruchten 43

Technical Debt

Technical debt landscape

m Mostly invisible Visible

% architecture code
New features o Architectural debt Low internal quality Defects

©

Additional functionalit -;—’O Structural debt Code smells Low external quality
_g Code complexity
£ Test debt Coding style violations
[S]
2 Documentation debt

< Evolution issues: evolvability > < Quality issues: maintainability >

Kruchten et al 2012

Copyright © 2014 Philippe Kruchten 88

@ References

= Brown, N., Cai, Y., Guo, Y., Kazman, R., Kim, M., Kruchten, P., et al. (2010). Managing
Technical Debt in Software-Intensive Systems. Paper presented at the Future of software
engineering research (FOSER) workshop, part of Foundations of Software Engineering (FSE
2010) conference.

= Brown, N., Nord, R., Ozkaya, I., Kruchten, P., & Lim, E. (2011). Hard Choice: A game for
balancing strategy for agility. Paper presented at the 24th IEEE CS Conference on Software
Engineering Education and Training (CSEE&T 2011), Honolulu, HI, USA.

® Cunningham, W. (1992). The WyCash Portfolio Management System. Paper presented at the
OOPSLA'92 conference, ACM. Retrieved from http://c2.com/doc/oopsla92.html

= Curtis, B., Sappidi, J., & Szynkarski, A. (2012). Estimating the Principal of an Application’s
Technical Debt. IEEE Software, 29(6).

® Denne, M., & Cleland-Huang, J. (2004). Software by Numbers: Low-Risk, High-Return
Development, Prentice Hall.

® Denne, M., & Cleland-Huang, J. (2004). The Incremental Funding Method: Data-Driven
Software Development, IEEE Software, 21(3), 39-47.

" Fowler, M. (2009), Technical debt quadrant, Blog post at:
http://www.martinfowler.com/bliki/TechnicalDebtQuadrant.html

" Gat, |. (ed.). (2010). How to settle your technical debt--a manager's guide. Arlington Mass:
Cutter Consortium.

® Kruchten, Ph. (2010) Contextualizing Agile Software Development,” Paper presented at the
EuroSPI 2010 conference in Grenoble, Sept.1-3, 2010

Copyright © 2014 Philippe Kruchten 89

Copyright © 2014 by Philippe Kruchten

January 2014

44

Technical Debt

@ References

Kruchten, P., Nord, R., & Ozkaya, I. (2012). Technical debt: from metaphor to theory and practice.
IEEE Software, 29(6).

Kruchten, P., Nord, R., Ozkaya, I., & Visser, J. (2012). Technical Debt in Software Development: from
Metaphor to Theory--Report on the Third International Workshop on Managing Technical Debt,
held at ICSE 2012 ACM SIGSOFT Software Engineering Notes, 37(5).

Li, Z., Madhaviji, N., Murtaza, S., Gittens, M., Miranskyy, A., Godwin, D., & Cialini, E. (2011).
Characteristics of multiple-component defects and architectural hotspots: a large system case
study. Empirical Software Engineering, 16(5), 667-702. doi: 10.1007/s10664-011-9155-y

Lim, E. (2012). Technical Debt: What Software Practitioners Have to Say. (Master's thesis),
University of British Columbia, Vancouver, Canada.

Lim, E., Taksande, N., & Seaman, C. B. (2012). A Balancing Act: What Software Practitioners Have to
Say about Technical Debt. IEEE Software, 29(6).

MacCormack, A., Rusnak, J., & Baldwin, C. Y. (2006). Exploring the structure of complex software
designs: An empirical study of open source and proprietary code. Management Science, 52(7),
1015-1030.

Nord, R., Ozkaya, I., Kruchten, P., & Gonzalez, M. (2012). In search of a metric for managing
architectural technical debt. Paper presented at the Working IEEE/IFIP Conference on Software
Architecture (WICSA 2012), Helsinki, Finland.

McConnell, S. (2007) Notes on Technical Debt, Blog post at: http://blogs.construx.com/blogs/
stevemcc/archive/2007/11/01/technical-debt-2.aspx

Special issue of Cutter IT Journal on Technical Debt, edited by I. Gat (October 2010) Cutter IT
Journal, 23 (10).

Sterling, C. (2010) Managing Software Debt, Addison-Wesley.
Copyright © 2014 Philippe Kruchten 90

@ References (cont.)

R. O. Spinola, N. Zazworka, A. Vetro, C. B. Seaman, and F. Shull, "Investigating Technical Debt
Folklore: Shedding Some Light on Technical Debt Opinion," in Proceedings of the 4th
Workshop on Managing Technical Debt, at ICSE 2013, P. Kruchten, I. Ozkaya, and R. Nord,
Eds., IEEE, 2013.

K. Schmid, "On the Limits of the Technical Debt Metaphor," in Proceedings of the 4th
Workshop on Managing Technical Debt, at ICSE 2013, P. Kruchten, I. Ozkaya, and R. Nord,
Eds., IEEE, 2013, pp. 63-66.

K. Schmid, "A Formal Approach to Technical Debt Decision Making," in Proceedings of the
Conference on Quality of Software Architecture QoSA'2013, Vancouver, 2013, ACM.

Copyright © 2014 Philippe Kruchten 91

Copyright © 2014 by Philippe Kruchten

January 2014

45

Technical Debt

Other sources (Talks/slides)

Gat, I., Heintz, J. (Aug. 19, 2010) Webinar: Reining in Technical Debt,
Cutter Consortium.

McConnell, S. (October 2011) Managing technical debt. (Webinar)

Kniberg, H. (2008) Technical debt-How not to ignore it, at Agile 2008
conference.

Kruchten, P. (2009) What colour is your backlog? Agile Vancouver
Conference. http://philippe.kruchten.com/talks

Sterling, C. (2009) http://www.slideshare.net/csterwa/managing-
software-debt-pnsqc-2009

Short, G. (2009) http://www.slideshare.net/garyshort/technical-
debt-2985889

West, D. (January 2011), Balancing agility and technical debt, Forrester &

Cast Software
Copyright © 2014 Philippe Kruchten @92

Other pointers

8 http://techdebt.org

mtechnicaldebt

http://www.ontechnicaldebt.com/

y @OnTechnicalDebt

Copyright © 2014 Philippe Kruchten 93

Copyright © 2014 by Philippe Kruchten

January 2014

46

Technical Debt

Acknowledgements

* My research partly funded by the

= Software Engineering Institute ‘ Carnegie Mellon

— Ipek Ozkaya, Rod Nord

— They have also contributed to building this tutorial
over the last 2 years.

e UBC master student Erin Lim Kam-Yan...

— And some industry partners in Canada

94

Slides?

http://philippe.kruchten.com/talks/

Copyright © 2014 Philippe Kruchten 95

Copyright © 2014 by Philippe Kruchten

January 2014

47

Technical Debt

Copyright © 2014 Philippe Kruchten 96

SGime

C@MFERENCE

Copyright © 2014 Philippe Kruchten 97

Copyright © 2014 by Philippe Kruchten

January 2014

48

