What colours is your backlog?

Philippe Kruchten
@pbpk

Philippe Kruchten, ph.o., p.eng., csop

C
=
e

))}

Agile

Professor of Software Engineering
NSERC Chair in Design Engineering @é"ﬁéﬁg

Department of Electrical and Computer Engineering

University of British Columbia
Vancouver, BC Canada
pbk@ece.ubc.ca

Founder and president
Kruchten Engineering Services Ltd
Vancouver, BC Canada

philippe@kruchten.com > g

//\m/ Vancouver I E E E H I'FI?)

The Backlog

E—

Feature Requests

Priority

Sprint Planning

!
>
2

-'-'\. m
}
}}
- o

i
— ’/
Feature Requests — \
&N,
_ _
Priority

o
Q

But what is in your backlog ?

Painting your backlog

Architecture
infrastructure
Technical
Debt

Time-box

DSDM 1995

Time-box

Staff

Time

Time-box

Work (or Effort)

Staff

Time

Time-box

Work (=Cost)

Staff

Time

Time-box

better than

Brooks, Mythical Man-Month, 1975
Boehm, COCOMO, 1981

Time-boxes: Releases

Release 1 R2 R3

R4

Time

Time-boxes: Iterations (sprints)

Release N
e

—_—
Time

Features

Intent

Features

Features

B Features

.

Rn

Features & Value

Utils

Maximizing value

Highest value first
lgnore time

v o
N

[HY

Cost?

Value = Cost?

Points

Only for simplest cases

Value /= Cost

Value

Cost

Value and Cost

Value: to the business (the users, the
customers, the public, etc.)

Cost: to design, develop, manufacture, deploy,
maintain

Simple system, stable architecture, many
small features:

— Statistically value aligns to cost
Large, complex, novel systems ?

Value

Intent Product
Time Time
Quality Quality
Risk Risk

Work People
Time Time
Quality Quality
Risk Risk

Cost

Efficiency vs. Effectiveness

Efficiency Effectiveness

* relationship between the * relationship between the
output in terms of goods, intended impact and the
services or other results and actual impact of an activity

the resources used to
produce them

Cost Value

] Cost will impose the limit

&

Rn

What colour is your backlog?

(so far)

Invisible Features

Features and ...

Invisible features

Architecture
Infrastructure
Frameworks

Architecture: Value and Cost

Architecture has no (or little) externally visible
“customer value”

lteration planning (backlog) is driven solely (?) by
“customer value”

YAGNI, BUFD, Metaphor,...
“Last responsible moment!”
We’'ll refactor it later!

Ergo: architectural activities are not given proper
attention

Ergo: large technical debts

Value

Value reallocated to architecture

o - Tj

@ @ e
==

S = 186 utils

Features

B Features

.

Rn

[Visible &Invisible

Features
<£|II?

-
=’

Time-box

Time-box with Buffer

v

What colour is your backlog?

(so far)

-- Defects

* Defect = Feature with negative value
* Fix (defect) has a positive cost (= work)

* Time/place of discovery
— Inside development (in-house, in process)

— Outside development in a released product
(escaped defects)

Escaped Defect has Negative Value

. -

Perfect product Imperfect product Defect

Buffer for in-process defects

$

Fixing a Defect has a Cost

Defects have both value and cost
Value of fixing a defect = —-Value of the defect
Cost of fixing a defect (estimated)

Defects have dependencies
— Defect fix depend on invisible feature

— Visible feature depending on a fix

[Visible and Invisible

Features
é

| ()

=’

[Visible & Invisible

= Features + Defects fixing

L]

R

What colour is your backlog?

(so far)

-- Technical Debt

* Concept introduced by Ward Cunningham
e Often mentioned, rarely studied

e All experienced SW developers “feel” it.

* Drags long-lived projects and products down
* Friction

Cunningham, OOPSLA 1992

Origin of the metaphor

 Ward Cunningham, at OOPSLA 1992

“Shipping first time code is like going

into debt. A little debt speeds development
so long as it is paid back promptly with a
rewrite...

The danger occurs when the debt is not |
repaid. Every minute spent on not-quite-right code
counts as interest on that debt. Entire engineering
organizations can be brought to a stand-still under the
debt load of an unconsolidated implementation,
object-oriented or otherwise.”

Cunningham, OOPSLA 1992

Technical Debt Definition (2013)

* A design or construction approach
that is expedient in the short
term, but that creates a technical
context in which the same work
will cost more to do later than it

would cost to do now (including
increased cost over time).

McConnell 2013

Technical Debt (S. McConnell)

* Implemented features (visible and invisible) =
assets = non-debt

* Type 1: unintentional, non-strategic; poor design
decisions, poor coding
* Type 2: intentional and strategic: optimize for the

present, not for the future.

— 2.A short-term: paid off quickly (refactorings, etc.)

e Large chunks: easy to track
* Many small bits: cannot track

— 2.B long-term

McConnell 2007

Technical Debt (M. Fowler)

Reckless Prudent
“We don’t have time “We must ship now
for design” and deal with
consequences”
Deliberate
Inadvertent

“Now we know how we

“What's Layering?” should have done it”

Fowler 2009, 2010

Technical Debt (1)

$15 $16 12 Bt
e

[a]$5 [b]$3

$20 $19 $18

Technical Debt (2)

$15 $16 12 Bt
e
S5

La Jss [[b s

R & El:s s

$25 $27 $28

Technical Debt (3)

12 $18) +$2
>
[a]$5

R =™ B 55

\ J
Y

$30

Interests

In presence of technical debt:
Cost of adding new features is higher

When repaying (fixing), additional cost for
retrofitting already implemented features

Technical debt not repaid => lead to increased
cost, forever

Cost of fixing increases over time

M. Fowler

TD litmus test

* |f you are not incurring any interest, then it
probably is not a debt

McConnell 2013

Technical debt landscape

m Mostly invisible Visible

= architecture code
New features | 22 Architectural debt Low internal quality Defects

(L)

Additional functionality -2 Structural debt Code smells Low external quality
% Code complexity
k= Test debt Coding style violations
O
- Documentation debt

< Evolution issues: evolvability > < Quality issues: maintainability >

Kruchten et al 2012

Technical debt

* Not just crappy code: wise investment

* Depends on the future

“Technical futures”

Repaying debt

* What to repay ?

* When to repay ?

Tackling Technical Debt

Attitudes and approaches found:

. lgnorance is bliss

. The elephant in the room

Big scary SSSS numbers

Five star ranking

We're agile, so we are immune!
Constant reduction

Reduction iterations (sprints)

NoOURwN R

Buffer for debt repayment

Debt

Defect Repayment
Estimate correctlon
Simple work uncertainties

Colours in your Backlog

Visible Invisible

POSiﬁve Visible Hidd.en,
Feature architectural
Value feature
Negative Technical
Value Debt

Visible & Invisible
Features + Defects fixing
+ Technical Debt payment

)

—

Tensions

Product manager Architects

Visible Hidden,
Feature architectural
feature

Technical
Debt

Customer

P
Support Nobody:

Tools !?

[LU &

~r

N A

T e b

e e B e e

] m] - W

-

#94 Tell AnonymousUsers the benefits of registering

Low Cost

High Yalue

#97 Legal notices Low Cost Medium Yalue

#100 Per-list unsubscribe for mailing-list-only users Medium Cost Medium Yalue

#50 Group member list: "edit details" for someone's membership Low Cost Medium Value

#96 Chapters (possibly networks?) map Medium Cost Low Yalue

#102 Topics should show icon of some sort to indicate attachments Low Cost Low Yalue

1.0 RC1 -Relase Candidate 1 14nuines

Ticket Summary Cost Yalue Owner

#49 switch to email-based usernames High Cost High Yalue joshuagorner
#54 Who's Online listing Medium Cost High Yalue francis

#55 National Office content Medium Cost High Yalue

#58 chapter vs network Medium Cost High Yalue joshuagorner
#61 Intuitive combinations of group visibility / privacy in Ul Medium Cost High Yalue

#0903 Individual anonymous users should be able to sign up to mailing lists Medium Cost High Yalue

#21 Yerify email accounts automatically Medium Cost Medium Value

#22 Multiple levels of membership in a group High Cost Medium Yalue

#23 Groups should have "former members" to handle involvement history Medium Cost Medium Yalue

#56 Suggested communities Medium Cost Medium Yalue

#60 Notifications for group invitations / requests Low Cost Medium Yalue

None (39 matches)

Ticket Summary Cost vYalue Owner
#64 fire and forget URL for signing up email addresses to the main list Medium Cost High Yalue

#67 topic-creation preview Medium Cost High Yalue

#99 feedback system Low Cost High Yalue

& Nicola Wealth Management Issue Tracking - Mozilla Firefox
File Edit Yiew History Delicious Bookmarks Tools Help

6' c _ﬁ, &y E E IC]}http:ﬁ'lo.10.1.3,fredminefkanban

|.2] Most Visited ’ Getting Started -.' Text and Web - Googl... - Latest Headlines C] Sign in @ Analytics Settings - G... M Visual Studio Add-Ins ... -" Google Apps
hj' (A Recently Bookmarked ~ 1:] THE PROCESS : DESI... G RuWi: Continuous Ins... _-L] SUA Community: Micr... (j SockMonkeysandBeer ... [j Don't Create Aggrega... [_1] Don't Delete — Just D... Xj Implementing an Eve...

Google |css style Font-color vI PP search - B @ & - - & - ol 9 Bookmarks 3 - Autolink ~) AutoFil - 4[] css [E] style [Font-color

J . The Background and Color Css Properties } C] Nicola Wealth Management Issu... &3 | W/ Web colors - Wikipedia, the free encycl... | C‘] Dave Raggett's Introduction to CS5 (=]} | . How to Change the Font Color with CS...] +- l

Kanban
Each list is & Pane of issues, The issues can be dragged and dropped onto other panes based on Roles and Permissions selings.
Incoming Quick Tasks User Active Testing
(No issues) Chris Nicola)
(No issues)
Selected Requests
Adam Dymitruk .
(No issues)
Admin Istrator i
(No issues)

Jennifer Keates
| #49 - Technical Debt - Unsorted - Test Technical _
Debt for Kanban Board

Lee Tippetts-

Aylmer | #48 - Architecture - Unsorted - Test Architecture (MO issues)
for Kanban Board

Paul Newton :
5 aaRre D E S TR GEETa a1 =5z

Richard Haisinger ; ;
(No issues) (No issues)

Based on Redmine, by Chris Nicola T

(No issues) (No issues)

Risks & Uncertainties

Rules of thumb:

L]

... facing uncertainty:
* Green stuff: move up

BD — Defer

* Yellow stuff: move down

— Experiment now

! Karl Wiegers, 1999
] Kruchten, 1998

Key message(s)

Having multiple repositories of things to do,
managed by multiple or different people,
based on different criteria is a bad idea.

It leads to delays, frustrations, accumulated
technical debt, reduced velocity, distrust....

Manage all colours together
Value is different than cost

Tensions

Product manager Architects

Visible Hidden,
Feature architectural
feature

Technical
Debt

Customer

P
Support Nobody:

Agility

e Lead to a shared mental model of the real
state of the project

e Common understanding of the nature and
extent of commitments

e Scale

Manage them all together

Visible Hidden,
Feature architectural
feature

Technical
Debt

-
=
e

Philippe Kruchten

@pbpk
philippe@kruchten.com
philippe.kruchten.com

@ References

®" Brown, N., Cai, Y., Guo, Y., Kazman, R., Kim, M., Kruchten, P., et al. (2010). Managing
Technical Debt in Software-Intensive Systems. Paper presented at the Future of software
engineering research (FOSER) workshop, part of Foundations of Software Engineering (FSE
2010) conference.

® Brown, N., Nord, R., Ozkaya, I., Kruchten, P., & Lim, E. (2011). Hard Choice: A game for
balancing strategy for agility. Paper presented at the 24th IEEE CS Conference on Software
Engineering Education and Training (CSEE&T 2011), Honolulu, HI, USA.

® Cunningham, W. (1992). The WyCash Portfolio Management System. Paper presented at the
OOPSLA'92 conference, ACM. Retrieved from http://c2.com/doc/oopsla92.html

" Curtis, B., Sappidi, J., & Szynkarski, A. (2012). Estimating the Principal of an Application’s
Technical Debt. IEEE Software, 29(6).

® Denne, M., & Cleland-Huang, J. (2004). Software by Numbers: Low-Risk, High-Return
Development, Prentice Hall.

® Denne, M., & Cleland-Huang, J. (2004). The Incremental Funding Method: Data-Driven
Software Development, IEEE Software, 21(3), 39-47.

® Fowler, M. (2009), Technical debt quadrant, Blog post at:
http://www.martinfowler.com/bliki/TechnicalDebtQuadrant.html

" Gat, . (ed.). (2010). How to settle your technical debt--a manager's guide. Arlington Mass:
Cutter Consortium.

® Kruchten, Ph. (2010) Contextualizing Agile Software Development,” Paper presented at the
EuroSPl 2010 conference in Grenoble, Sept.1-3, 2010

References

Kruchten, P., Nord, R., & Ozkaya, |. (2012). Technical debt: from metaphor to theory and practice.
IEEE Software, 29(6).

Kruchten, P., Nord, R., Ozkaya, I., & Visser, J. (2012). Technical Debt in Software Development: from
Metaphor to Theory--Report on the Third International Workshop on Managing Technical Debt,
held at ICSE 2012 ACM SIGSOFT Software Engineering Notes, 37(5).

Li, Z., Madhaviji, N., Murtaza, S., Gittens, M., Miranskyy, A., Godwin, D., & Cialini, E. (2011).
Characteristics of multiple-component defects and architectural hotspots: a large system case
study. Empirical Software Engineering, 16(5), 667-702. doi: 10.1007/s10664-011-9155-y

Lim, E. (2012). Technical Debt: What Software Practitioners Have to Say. (Master's thesis),
University of British Columbia, Vancouver, Canada.

Lim, E., Taksande, N., & Seaman, C. B. (2012). A Balancing Act: What Software Practitioners Have to
Say about Technical Debt. IEEE Software, 29(6).

MacCormack, A., Rusnak, J., & Baldwin, C. Y. (2006). Exploring the structure of complex software

designs: An empirical study of open source and proprietary code. Management Science, 52(7),
1015-1030.

Nord, R., Ozkaya, |., Kruchten, P., & Gonzalez, M. (2012). In search of a metric for managing
architectural technical debt. Paper presented at the Working IEEE/IFIP Conference on Software
Architecture (WICSA 2012), Helsinki, Finland.

McConnell, S. (2007) Notes on Technical Debt, Blog post at: http://blogs.construx.com/blogs/
stevemcc/archive/2007/11/01/technical-debt-2.aspx

Special issue of Cutter IT Journal on Technical Debt, edited by I. Gat (October 2010) Cutter IT
Journal, 23 (10).

Sterling, C. (2010) Managing Software Debt, Addison-Wesley.

@ References (cont.)

R. O. Spinola, N. Zazworka, A. Vetro, C. B. Seaman, and F. Shull, "Investigating Technical Debt
Folklore: Shedding Some Light on Technical Debt Opinion," in Proceedings of the 4th
Workshop on Managing Technical Debt, at ICSE 2013, P. Kruchten, |. Ozkaya, and R. Nord,
Eds., IEEE, 2013.

K. Schmid, "On the Limits of the Technical Debt Metaphor," in Proceedings of the 4th
Workshop on Managing Technical Debt, at ICSE 2013, P. Kruchten, |. Ozkaya, and R. Nord,
Eds., IEEE, 2013, pp. 63-66.

K. Schmid, "A Formal Approach to Technical Debt Decision Making," in Proceedings of the
Conference on Quality of Software Architecture QoSA'2013, Vancouver, 2013, ACM.

Other pointers

http://techdebt.org

@technicaldebt

http://www.ontechnicaldebt.com/

y @OnTechnicalDebt

