
What	
 colours	
 is	
 your	
 backlog?	
 	

Philippe	
 Kruchten	

@pbpk	

Philippe	
 Kruchten,	
 Ph.D.,	
 P.Eng.,	
 CSDP	

Professor	
 of	
 So)ware	
 Engineering	

NSERC	
 Chair	
 in	
 Design	
 Engineering	

Department	
 of	
 Electrical	
 and	
 Computer	
 Engineering	

University	
 of	
 BriDsh	
 Columbia	

Vancouver,	
 BC	
 Canada	

pbk@ece.ubc.ca	

	
 	
 	
 	

Founder	
 and	
 president	

Kruchten	
 Engineering	
 Services	
 Ltd	

Vancouver,	
 BC	
 Canada 	
 	

philippe@kruchten.com	
 	

The	
 Backlog	

Feature	
 Requests	

Priority	

Sprint	
 Planning	

Feature	
 Requests	

Priority	

Sprint	
 Backlog	

But	
 what	
 is	
 in	
 your	
 backlog	
 ?	

PainDng	
 your	
 backlog	

Features	
 Architecture	

infrastructure	

Defects	
 Technical	

Debt	

Time-­‐box	

DSDM	
 1995	

Time-­‐box	

St
aff

	

Time	

Time-­‐box	

St
aff

	

Time	

Work	
 (or	
 Effort)	

Time-­‐box	

St
aff

	

Time	

Work	
 (≈Cost)	

Time-­‐box	

Brooks,	
 	
 Mythical	
 Man-­‐Month,	
 1975	

Boehm,	
 COCOMO,	
 1981	

beYer	
 than	

Time-­‐boxes:	
 Releases	

Time	

Release	
 1	
 R2	
 R3	
 R4	

Time-­‐boxes:	
 IteraDons	
 (sprints)	

Time	

Release	
 N	

ITERATION	
 1	
 It.	
 2	
 It.	
 3	

Features	
 	

Intent	

Features	
 	

Features	
 	

Features	
 	

?	

Rn	

Features	
 &	
 Value	
 	

4	

4	

6	

5	

2	

7	
 3	

12	

3	

5	

UDls	

Maximizing	
 value	

4	

4	

6	

5	

2	

7	

3	

12	

3	

5	

Highest	
 value	
 first	

Ignore	
 Dme	

Cost?	

?	

Rn	

Value	
 =	
 Cost?	

4	

4	

6	

5	

2	

7	
 3	

12	

3	

5	

$8	

$15	

$5	

$5	

$2	

$5	

$5	

$5	

$5	

$1	

Only	
 for	
 simplest	
 cases	

Points	

Value	
 /=	
 Cost	

6	
 $8	

12	
 $15	

3	
 $5	

3	
 $5	

7	
 $2	

4	
 $5	

2	
 $5	

5	
 $5	

4	
 $5	

5	
 $1	

Va
lu
e	

Cost	

Value	
 and	
 Cost	

•  Value:	
 to	
 the	
 business	
 (the	
 users,	
 the	

customers,	
 the	
 public,	
 etc.)	

•  Cost:	
 to	
 design,	
 develop,	
 manufacture,	
 deploy,	

maintain	

•  Simple	
 system,	
 stable	
 architecture,	
 many	

small	
 features:	

– StaDsDcally	
 value	
 aligns	
 to	
 cost	

•  Large,	
 complex,	
 novel	
 systems	
 ?	

Time
Quality
Risk

Intent

Time
Quality
Risk

Product

Time
Quality
Risk

Work

Time
Quality
Risk

People

Value	

Cost	

Efficiency	
 	
 vs.	
 EffecDveness	

Efficiency	

•  relaDonship	
 between	
 the	

output	
 in	
 terms	
 of	
 goods,	

services	
 or	
 other	
 results	
 and	

the	
 resources	
 used	
 to	

produce	
 them	

	

EffecFveness	

•  relaDonship	
 between	
 the	

intended	
 impact	
 and	
 the	

actual	
 impact	
 of	
 an	
 acDvity	

	

Cost	
 Value	

Cost	
 will	
 impose	
 the	
 limit	
 	

Rn	

What	
 colour	
 is	
 your	
 backlog?	
 	

(so	
 far)	

✔︎	

Invisible	
 Features	

12	

12	

?	

$10	

$15	

$5	

Features	
 and	
 …	
 	

Invisible	
 features	

•  Architecture	

•  Infrastructure	

•  Frameworks	

•  ….	

Dependencies	

Architecture:	
 Value	
 and	
 Cost	

•  Architecture	
 has	
 no	
 (or	
 liYle)	
 externally	
 visible	

“customer	
 value”	

•  IteraDon	
 planning	
 (backlog)	
 is	
 driven	
 solely	
 (?)	
 by	

“customer	
 value”	

•  YAGNI,	
 BUFD,	
 Metaphor,…	

•  “Last	
 responsible	
 moment!”	

•  We’ll	
 refactor	
 it	
 later!	

•  Ergo:	
 architectural	
 acDviDes	
 are	
 not	
 given	
 proper	

aYenDon	

•  Ergo:	
 large	
 technical	
 debts	

Value	

22	

12	

31	

18	

6	

10	

21	

34	

20	

12	

∑	
 =	
 	
 186	
 uDls	

Value	
 reallocated	
 to	
 architecture	

22-­‐3	

12	

31-­‐4	

18	

6	

10-­‐1	

21-­‐3	

34-­‐8	

20-­‐3	

12-­‐2	

7	
 12-­‐2	

2	

6	

1	

4-­‐1	

∑	
 =	
 	
 186	
 uDls	

Features	
 	

Features	
 	

?	

Rn	

Visible	
 &Invisible	
 	

Features	
 	

Time-­‐box	

Time-­‐box	
 with	
 Buffer	

What	
 colour	
 is	
 your	
 backlog?	
 	

(so	
 far)	

✔︎	
 ✔︎	

Defects	

•  Defect	
 =	
 Feature	
 with	
 negaDve	
 value	

•  Fix	
 (defect)	
 has	
 a	
 posiDve	
 cost	
 (=	
 work)	

•  Time/place	
 of	
 discovery	

–  Inside	
 development	
 (in-­‐house,	
 in	
 process)	

– Outside	
 development	
 in	
 a	
 released	
 product	

(escaped	
 defects)	

Escaped	
 Defect	
 has	
 NegaDve	
 Value	

Perfect	
 product	
 Imperfect	
 product	
 Defect	

Buffer	
 for	
 in-­‐process	
 defects	

Fixing	
 a	
 Defect	
 has	
 a	
 Cost	

•  Defects	
 have	
 both	
 value	
 and	
 cost	

•  Value	
 of	
 fixing	
 a	
 defect	
 =	
 	
 −Value	
 of	
 the	
 defect	

•  Cost	
 of	
 fixing	
 a	
 defect	
 (esDmated)	

•  Defects	
 have	
 dependencies	

– Defect	
 fix	
 depend	
 on	
 invisible	
 feature	

– Visible	
 feature	
 depending	
 on	
 a	
 fix	

Visible	
 and	
 Invisible	
 	

Features	
 	

Visible	
 &	
 Invisible	
 	

Features	
 +	
 Defects	
 fixing	

What	
 colour	
 is	
 your	
 backlog?	
 	

(so	
 far)	

√	
 √	

√	

Technical	
 Debt	

•  Concept	
 introduced	
 by	
 Ward	
 Cunningham	

•  Ouen	
 menDoned,	
 rarely	
 studied	

•  All	
 experienced	
 SW	
 developers	
 “feel”	
 it.	

•  Drags	
 long-­‐lived	
 projects	
 and	
 products	
 down	

•  FricDon	

Cunningham,	
 OOPSLA	
 1992	

Origin	
 of	
 the	
 metaphor	

•  Ward	
 Cunningham,	
 at	
 OOPSLA	
 1992	

	
 “Shipping	
 first	
 Dme	
 code	
 is	
 like	
 going	

into	
 debt.	
 A	
 liYle	
 debt	
 speeds	
 development	
 	

so	
 long	
 as	
 it	
 is	
 paid	
 back	
 promptly	
 with	
 a	
 	

rewrite…	

The	
 danger	
 occurs	
 when	
 the	
 debt	
 is	
 not	
 	

repaid.	
 Every	
 minute	
 spent	
 on	
 not-­‐quite-­‐right	
 code	

counts	
 as	
 interest	
 on	
 that	
 debt.	
 EnDre	
 engineering	

organizaDons	
 can	
 be	
 brought	
 to	
 a	
 stand-­‐sDll	
 under	
 the	

debt	
 load	
 of	
 an	
 unconsolidated	
 implementaDon,	

object-­‐oriented	
 or	
 otherwise.”	

Cunningham,	
 OOPSLA	
 1992	

Technical	
 Debt	
 DefiniDon	
 (2013)	

•  A	
 design	
 or	
 construcDon	
 approach	

that	
 is	
 expedient	
 in	
 the	
 short	

term,	
 but	
 that	
 creates	
 a	
 technical	

context	
 in	
 which	
 the	
 same	
 work	

will	
 cost	
 more	
 to	
 do	
 later	
 than	
 it	

would	
 cost	
 to	
 do	
 now	
 (including	

increased	
 cost	
 over	
 Dme).	

McConnell	
 2013	

Technical	
 Debt	
 (S.	
 McConnell)	

•  Implemented	
 features	
 (visible	
 and	
 invisible)	
 =	

assets	
 =	
 non-­‐debt	

•  Type	
 1:	
 unintenDonal,	
 non-­‐strategic;	
 poor	
 design	

decisions,	
 poor	
 coding	

•  Type	
 2:	
 intenDonal	
 and	
 strategic:	
 opDmize	
 for	
 the	

present,	
 not	
 for	
 the	
 future.	

–  2.A	
 short-­‐term:	
 paid	
 off	
 quickly	
 (refactorings,	
 etc.)	

•  Large	
 chunks:	
 easy	
 to	
 track	

•  Many	
 small	
 bits:	
 cannot	
 track	

–  2.B	
 long-­‐term	

McConnell	
 2007	

Technical	
 Debt	
 (M.	
 	
 Fowler)	

Fowler	
 2009,	
 2010	

Technical	
 Debt	
 (1)	

12	

12	

a	

$15	

$5	

12	

b	

$16	

$3	

12	
 $18	

$20	
 $19	
 $18	

Technical	
 Debt	
 (2)	

12	

12	

a	

$15	

$5	

12	

b	

$16	

$3	

12	
 $18	

8	
 8	
 $5	
 8	
 $8	
 8	
 $10	

$25	
 $27	
 $28	

Technical	
 Debt	
 (3)	

12	

12	

a	

+$2	

$5	

12	
 $18	

8	
 8	
 $5	

$30	

Interests	

•  In	
 presence	
 of	
 technical	
 debt:	

	
 Cost	
 of	
 adding	
 new	
 features	
 is	
 higher	

•  When	
 repaying	
 (fixing),	
 addiDonal	
 cost	
 for	

retrofixng	
 already	
 implemented	
 features	

•  Technical	
 debt	
 not	
 repaid	
 =>	
 lead	
 to	
 increased	

cost,	
 forever	

•  Cost	
 of	
 fixing	
 increases	
 over	
 Dme	

M.	
 Fowler	

TD	
 litmus	
 test	

•  If	
 you	
 are	
 not	
 incurring	
 any	
 interest,	
 then	
 it	

probably	
 is	
 not	
 a	
 debt	

McConnell	
 2013	

Visible	

New	
 features	

Te
ch
no

lo
gi
ca
l	
 g
ap
	

Architectural	
 debt	

Structural	
 debt	
 Code	
 smells	

Defects	
 Low	
 internal	
 quality	

AddiDonal	
 funcDonality	
 Low	
 external	
 quality	

Mostly	
 invisible	

Test	
 debt	

DocumentaDon	
 debt	

EvoluDon	
 issues:	
 evolvability	
 Quality	
 issues:	
 maintainability	

Visible	

architecture	
 code	

Code	
 complexity	

Coding	
 style	
 violaDons	

Technical	
 debt	
 landscape	

Kruchten	
 et	
 al	
 2012	

Technical	
 debt	

•  Not	
 just	
 crappy	
 code:	
 wise	
 investment	

	

•  Depends	
 on	
 the	
 future	

“Technical	
 futures”	

Repaying	
 debt	

•  What	
 to	
 repay	
 ?	

•  When	
 to	
 repay	
 ?	

Tackling	
 Technical	
 Debt	

Axtudes	
 and	
 approaches	
 found:	

1.  Ignorance	
 is	
 bliss	

2.  The	
 elephant	
 in	
 the	
 room	

3.  Big	
 scary	
 $$$$	
 numbers	

4.  Five	
 star	
 ranking	

5.  We’re	
 agile,	
 so	
 we	
 are	
 immune!	

6.  Constant	
 reducDon	

7.  ReducDon	
 iteraDons	
 (sprints)	

62	
 Copyright	
 ©	
 2014	
 	
 Philippe	
 Kruchten	

Buffer	
 for	
 debt	
 repayment	

Simple	
 work	

EsDmate	
 	

uncertainDes	

Defect	
 	

correcDon	

Debt	

Repayment	

Colours	
 in	
 your	
 Backlog	

Visible	

Feature	

Hidden,	

architectural	

feature	

Visible	

defect	

Technical	

Debt	

Visible	
 Invisible	

PosiDve	

Value	

NegaDve	

Value	

Visible	
 &	
 Invisible	
 	

Features	
 +	
 Defects	
 fixing	

+	
 Technical	
 Debt	
 payment	

Tensions	

Visible	

Feature	

Hidden,	

architectural	

feature	

Visible	

defect	

Technical	

Debt	

Product	
 manager	
 Architects	

Customer	

Support	
 Nobody?	

Tools	
 !?	

Based	
 on	
 Redmine,	
 by	
 Chris	
 Nicola	

Risks	
 &	
 UncertainDes	

Rules	
 of	
 thumb:	

…	
 facing	
 uncertainty:	

•  Green	
 stuff:	
 move	
 up	

– Defer	

•  Yellow	
 stuff:	
 move	
 down	

– Experiment	
 now	

Karl	
 Wiegers,	
 1999	

Kruchten,	
 1998	

Key	
 message(s)	

•  Having	
 mulDple	
 repositories	
 of	
 things	
 to	
 do,	

managed	
 by	
 mulDple	
 or	
 different	
 people,	

based	
 on	
 different	
 criteria	
 is	
 a	
 bad	
 idea.	

•  It	
 leads	
 to	
 delays,	
 frustraDons,	
 accumulated	

technical	
 debt,	
 reduced	
 velocity,	
 distrust….	

•  Manage	
 all	
 colours	
 together	

•  Value	
 is	
 different	
 than	
 cost	

Tensions	

Visible	

Feature	

Hidden,	

architectural	

feature	

Visible	

defect	

Technical	

Debt	

Product	
 manager	
 Architects	

Customer	

Support	
 Nobody?	

Agility	

•  Lead	
 to	
 a	
 shared	
 mental	
 model	
 of	
 the	
 real	

state	
 of	
 the	
 project	

•  Common	
 understanding	
 of	
 the	
 nature	
 and	

extent	
 of	
 commitments	

•  Scale	

Manage	
 them	
 all	
 together	

Visible	

Feature	

Hidden,	

architectural	

feature	

Visible	

defect	

Technical	

Debt	

Philippe	
 Kruchten	

@pbpk	

philippe@kruchten.com	

philippe.kruchten.com	

	

References	

§  Brown,	
 N.,	
 Cai,	
 Y.,	
 Guo,	
 Y.,	
 Kazman,	
 R.,	
 Kim,	
 M.,	
 Kruchten,	
 P.,	
 et	
 al.	
 (2010).	
 Managing	

Technical	
 Debt	
 in	
 So)ware-­‐Intensive	
 Systems.	
 Paper	
 presented	
 at	
 the	
 Future	
 of	
 souware	

engineering	
 research	
 (FoSER)	
 workshop,	
 part	
 of	
 FoundaDons	
 of	
 Souware	
 Engineering	
 (FSE	

2010)	
 conference.	
 	

§  Brown,	
 N.,	
 Nord,	
 R.,	
 Ozkaya,	
 I.,	
 Kruchten,	
 P.,	
 &	
 Lim,	
 E.	
 (2011).	
 Hard	
 Choice:	
 A	
 game	
 for	

balancing	
 strategy	
 for	
 agility.	
 Paper	
 presented	
 at	
 the	
 24th	
 IEEE	
 CS	
 Conference	
 on	
 Souware	

Engineering	
 EducaDon	
 and	
 Training	
 (CSEE&T	
 2011),	
 Honolulu,	
 HI,	
 USA.	

§  Cunningham,	
 W.	
 (1992).	
 The	
 WyCash	
 PorHolio	
 Management	
 System.	
 Paper	
 presented	
 at	
 the	

OOPSLA'92	
 conference,	
 ACM.	
 Retrieved	
 from	
 hYp://c2.com/doc/oopsla92.html	

§  CurDs,	
 B.,	
 Sappidi,	
 J.,	
 &	
 Szynkarski,	
 A.	
 (2012).	
 EsDmaDng	
 the	
 Principal	
 of	
 an	
 ApplicaDon’s	

Technical	
 Debt.	
 IEEE	
 	
 Souware,	
 29(6).	

§  Denne,	
 M.,	
 &	
 Cleland-­‐Huang,	
 J.	
 (2004).	
 So)ware	
 by	
 Numbers:	
 Low-­‐Risk,	
 High-­‐Return	

Development,	
 PrenDce	
 Hall.	

§  Denne,	
 M.,	
 &	
 Cleland-­‐Huang,	
 J.	
 (2004).	
 The	
 Incremental	
 Funding	
 Method:	
 Data-­‐Driven	

Souware	
 Development,	
 IEEE	
 So)ware,	
 21(3),	
 39-­‐47.	

§  Fowler,	
 M.	
 (2009),	
 Technical	
 debt	
 quadrant,	
 Blog	
 post	
 at:	

hYp://www.marDnfowler.com/bliki/TechnicalDebtQuadrant.html	
 	

§  Gat,	
 I.	
 (ed.).	
 (2010).	
 How	
 to	
 seNle	
 your	
 technical	
 debt-­‐-­‐a	
 manager's	
 guide.	
 Arlington	
 Mass:	

CuYer	
 ConsorDum.	

§  Kruchten,	
 Ph.	
 (2010)	
 Contextualizing	
 Agile	
 Souware	
 Development,”	
 Paper	
 presented	
 at	
 the	

EuroSPI	
 2010	
 conference	
 in	
 Grenoble,	
 Sept.1-­‐3,	
 2010	
 	
 	

References	

§  Kruchten,	
 P.,	
 Nord,	
 R.,	
 &	
 Ozkaya,	
 I.	
 (2012).	
 Technical	
 debt:	
 from	
 metaphor	
 to	
 theory	
 and	
 pracDce.	

IEEE	
 	
 So)ware,	
 29(6).	
 	

§  Kruchten,	
 P.,	
 Nord,	
 R.,	
 Ozkaya,	
 I.,	
 &	
 Visser,	
 J.	
 (2012).	
 Technical	
 Debt	
 in	
 Souware	
 Development:	
 from	

Metaphor	
 to	
 Theory-­‐-­‐Report	
 on	
 the	
 Third	
 InternaDonal	
 Workshop	
 on	
 Managing	
 Technical	
 Debt,	

held	
 at	
 ICSE	
 2012	
 ACM	
 SIGSOFT	
 So)ware	
 Engineering	
 Notes,	
 37(5).	
 	

§  Li,	
 Z.,	
 Madhavji,	
 N.,	
 Murtaza,	
 S.,	
 GiYens,	
 M.,	
 Miranskyy,	
 A.,	
 Godwin,	
 D.,	
 &	
 Cialini,	
 E.	
 (2011).	

CharacterisDcs	
 of	
 mulDple-­‐component	
 defects	
 and	
 architectural	
 hotspots:	
 a	
 large	
 system	
 case	

study.	
 Empirical	
 So)ware	
 Engineering,	
 16(5),	
 667-­‐702.	
 doi:	
 10.1007/s10664-­‐011-­‐9155-­‐y	

§  Lim,	
 E.	
 (2012).	
 Technical	
 Debt:	
 What	
 So)ware	
 PracSSoners	
 Have	
 to	
 Say.	
 (Master's	
 thesis),	

University	
 of	
 BriDsh	
 Columbia,	
 Vancouver,	
 Canada.	
 	
 	
 	

§  Lim,	
 E.,	
 Taksande,	
 N.,	
 &	
 Seaman,	
 C.	
 B.	
 (2012).	
 A	
 Balancing	
 Act:	
 What	
 Souware	
 PracDDoners	
 Have	
 to	

Say	
 about	
 Technical	
 Debt.	
 IEEE	
 	
 So)ware,	
 29(6).	

§  MacCormack,	
 A.,	
 Rusnak,	
 J.,	
 &	
 Baldwin,	
 C.	
 Y.	
 (2006).	
 Exploring	
 the	
 structure	
 of	
 complex	
 souware	

designs:	
 An	
 empirical	
 study	
 of	
 open	
 source	
 and	
 proprietary	
 code.	
 Management	
 Science,	
 52(7),	

1015-­‐1030.	
 	

§  Nord,	
 R.,	
 Ozkaya,	
 I.,	
 Kruchten,	
 P.,	
 &	
 Gonzalez,	
 M.	
 (2012).	
 In	
 search	
 of	
 a	
 metric	
 for	
 managing	

architectural	
 technical	
 debt.	
 Paper	
 presented	
 at	
 the	
 Working	
 IEEE/IFIP	
 Conference	
 on	
 So)ware	

Architecture	
 (WICSA	
 2012),	
 Helsinki,	
 Finland.	

§  McConnell,	
 S.	
 (2007)	
 Notes	
 on	
 Technical	
 Debt,	
 Blog	
 post	
 at:	
 hYp://blogs.construx.com/blogs/
stevemcc/archive/2007/11/01/technical-­‐debt-­‐2.aspx	

§  Special	
 issue	
 of	
 CuNer	
 IT	
 Journal	
 on	
 Technical	
 Debt,	
 edited	
 by	
 I.	
 Gat	
 (October	
 2010)	
 CuYer	
 IT	

Journal,	
 23	
 (10).	

§  Sterling,	
 C.	
 (2010)	
 Managing	
 So)ware	
 Debt,	
 Addison-­‐Wesley.	

References	
 (cont.)	

§  R.	
 O.	
 Spinola,	
 N.	
 Zazworka,	
 A.	
 Vetrò,	
 C.	
 B.	
 Seaman,	
 and	
 F.	
 Shull,	
 "InvesDgaDng	
 Technical	
 Debt	

Folklore:	
 Shedding	
 Some	
 Light	
 on	
 Technical	
 Debt	
 Opinion,"	
 in	
 Proceedings	
 of	
 the	
 4th	

Workshop	
 on	
 Managing	
 Technical	
 Debt,	
 at	
 ICSE	
 2013,	
 P.	
 Kruchten,	
 I.	
 Ozkaya,	
 and	
 R.	
 Nord,	

Eds.,	
 IEEE,	
 2013.	

§  K.	
 Schmid,	
 "On	
 the	
 Limits	
 of	
 the	
 Technical	
 Debt	
 Metaphor,"	
 in	
 	
 Proceedings	
 of	
 the	
 4th	

Workshop	
 on	
 Managing	
 Technical	
 Debt,	
 at	
 ICSE	
 2013,	
 P.	
 Kruchten,	
 I.	
 Ozkaya,	
 and	
 R.	
 Nord,	

Eds.,	
 IEEE,	
 2013,	
 pp.	
 63-­‐66.	

§  K.	
 Schmid,	
 "A	
 Formal	
 Approach	
 to	
 Technical	
 Debt	
 Decision	
 Making,"	
 in	
 Proceedings	
 of	
 the	

Conference	
 on	
 Quality	
 of	
 Souware	
 Architecture	
 QoSA'2013,	
 Vancouver,	
 2013,	
 ACM.	

Other	
 pointers	

hYp://techdebt.org	

	

	

hYp://www.ontechnicaldebt.com/	

	

@OnTechnicalDebt	

