Technical Debt August 2012

Technical Debt

from metaphor to theory and practice

Philippe Kruchten
Helsinki, August 215t 2012

Philippe Kruchten, ph.o, peng., csop

Professor of Software Engineering
NSERC Chair in Design Engineering

Department of Electrical and Computer Engineering
University of British Columbia
Vancouver, BC Canada
pbk@ece.ubc.ca

Founder and president

Kruchten Engineering Services Ltd
Vancouver, BC Canada
philippe@kruchten.com

Copyright © KESL 2012 2

Copyright © 2012 by Philippe Kruchten 1

Technical Debt

Outline

What is technical debt? Several viewpoints.

The technical debt landscape

Structural or architectural debt

Research on technical debt

“Managing” technical debt

Summary, useful pointers

Copyright © KESL 2012

Acknowledgements

* Research on TD partly funded by the
f; Software Engineering Institute ‘ Carnegie Mellon
— Ipek Ozkaya, Rod Nord, Nanette Brown

— They have also contributed to building this
presentation over the last 2 years.

¢ UBC master students Erin Lim Kam-Yan and ’QBcd
Marco Gonzalez-Rojas ...

— ... with some industry partners

Copyright © KESL 2012 4

Copyright © 2012 by Philippe Kruchten

August 2012

Technical Debt August 2012

=- Technical Debt

Concept introduced by Ward Cunningham

Often mentioned, rarely studied

All experienced software developers “feel” it.

Drags long-lived projects and products down

Copyright © KESL 2012 5

Origin of the metaphor

* Ward Cunningham, at OOPSLA 1992

“Shipping first time code is like going

into debt. A little debt speeds development
so long as it is paid back promptly with a
rewrite...

The danger occurs when the debt is not ;
repaid. Every minute spent on not-quite-right code
counts as interest on that debt. Entire engineering
organizations can be brought to a stand-still under the
debt load of an unconsolidated implementation,
object-oriented or otherwise.”

Cunningham, OOPSLA 1992

Copyright © KESL 2012 6

Copyright © 2012 by Philippe Kruchten 3

Technical Debt

Technical Debt (S. McConnell)

* Implemented features (visible and
invisible) = assets = non-debt

* Type 1: unintentional, non-strategic;
poor design decisions, poor coding

* Type 2: intentional and strategic:
optimize for the present, not for the
future.
— 2.A short-term: paid off quickly (refactorings, etc.)

* Large chunks: easy to track
* Many small bits: cannot track

— 2.Blong-term

McConnell 2007

Copyright © KESL 2012 7

Technical Debt (M. Fowler)

Reckless Prudent
“We don’t have time “We must ship now
for design” and deal with
consequences”
Deliberate
Inadvertent

“) o “Now we know how we
What's Layering? should have done it”

Fowler 2009, 2010

Copyright © KESL 2012 8

Copyright © 2012 by Philippe Kruchten

August 2012

Technical Debt August 2012

Exam P le underestimated
re-architecting costs
First more capabilities hen, more infrastructure
H

A

need to monitor technical

debt to gain insight into
life-cycle efficiency

neglected cost of delay
to market

a80El
10CER
EEERE
E480E
Rl
First more infrastructure Then, more capabilities
Ozkaya, SE|,2010 Copyright © KESL 2012 9

Technical Debt (Chris Sterling)

* Technical Debt: issues found in the code
that will affect future development but not
those dealing with feature completeness.

Or

* Technical Debt is the decay of
component and intercomponent
behaviour when the application
functionality meets a minimum
standard of satisfaction for the customer.

Copyright © KESL 2012 10

Copyright © 2012 by Philippe Kruchten 5

Technical Debt August 2012

Technical Debt (S. McConnell)

* TD: A design or construction
approach that is expedient in the
short term but that creates a
technical context in which the
same work will cost more to do
later than it would cost to do now

McConnell 2011

Copyright © KESL 2012 11

Tech Debt (Jim Highsmith)

m Once on far right of curve, all

Customer .
choices are hard

Responsiveness

m [f nothing is done, it just gets
worse

m In applications with high
technical debt, estimating is

Cost of Change (CoC)

Product Technical Debt nearly impossible
Release P
{ —_ _ = Optimal CoC m Only 3 strategies
s e o > . .
12345678 1. Do nothing, it gets worse
Years 2. Replace, high cost/risk

3. Incremental refactoring,
commitment to invest

Copyright © KESL 2012 Source: Highsmith, 2009,,

Copyright © 2012 by Philippe Kruchten 6

Technical Debt August 2012

Time is Money (l. Gat)

e Convert this in monetary terms:

“Think of the amount of money the
borrowed time represents — the
grand total required to eliminate
all issues found in the code”

Gat 2010

Copyright © KESL 2012 13

Example: TD is the sum of...

e Code smells 167 person days
* Missing tests 298 person days
* Design 670 person days

Documentation 67 person days

Totals
Work 1,202 person x days
Cost S$577,000

Copyright © KESL 2012 14

Copyright © 2012 by Philippe Kruchten 7

Technical Debt

Reduced
Development
Team
Velocity

Technical

Debt Accrues

Israel Gat, 2010

(more)

Relentless

Pressure

Take
Technical
Debt

Fail to Pay
back
Technical
debt

http://theagileexecutive.com/2010/09/20/how-to-break-the-vicious-cycle-of-technical-debt/
Copyright © KESL 2012 15

Causes of Technical Debt

TECHNOLOGY

* Technology limitations
* Legacy code

+ COTS

» Changes in technology
* Project maturity

PROCESS

- Little consideration of code maintenance
* Unclear requirements

« Cutting back on process (code reviews)
« Little or no history of design decisions

» Not knowing or adopting best practices

PEOPLE

* Postpone work until needed

» Making bad assumptions

* Inexperience

* Poor leadership/team dynamics

* No push-back against customers

* “Superstars” — egos get in the way
» Little knowledge transfer

» Know-how to safely change code
+ Subcontractors

PRODUCT

- Schedule and budget constraints

» Poor communication between
developers and management

» Changing priorities (market information)

* Lack of vision, plan, strategy

 Unclear goals, objectives and priorities

* Trying to make every customer happy

» Consequences of decisions not clear

Lim et al. 2012

Copyright © KESL 2012 16

Copyright © 2012 by Philippe Kruchten

August 2012

Technical Debt August 2012

Technical debt landscape

m Mostly invisible Visible

o architecture code
New features 5 Architectural debt Low internal quality Defects
Additional functionalit .g Structural debt Code smells Low external quality
K} Code complexity
_g Test debt Coding style violations
E Documentation debt

< Evolution issues: evolvability > < Quality issues: maintainability >

Copyright © KESL 2012 19

Copyright © 2012 by Philippe Kruchten 9

Technical Debt

"

Value of Software Architecture

A little détour

Value and cost

* Architecture has no (or little) externally visible
“customer value”

* Iteration planning (backlog) is driven by
“customer value”

* Ergo: architectural activities are often not
given attention

e BUFD & YAGNI & Refactor!

Copyright © KESL 2012 22

Copyright © 2012 by Philippe Kruchten

August 2012

10

Technical Debt

Value and cost

* Cost of development is not identical to value

* Trying to assess value and cost in monetary
terms is hard and often leads to vain
arguments

* Use “points” for cost and “utils” for value

* Use simple technique(s) to evaluation cost in
points and value in utils.

Copyright © KESL 2012 23

What'’s in your backlog?

Visible Invisible

\EVAEE (98 Architectural,
| Added Structural
Value functionality RCEIUES

Positive

Negative Technical
Value Debt

Copyright © KESL 2012 24

Copyright © 2012 by Philippe Kruchten

August 2012

11

Technical Debt

TD: negative value, invisible

Visible Invisible

\EAEE (9 Architectural,

Positive
Added Structural
Value functionality §":
Negative Technical
Value Debt

Copyright © KESL 2012

25

Technical Debt (1)

$15 $16 $18
=)
$5 $3

$20 $19 $18

Copyright © KESL 2012

26

Copyright © 2012 by Philippe Kruchten

August 2012

12

Technical Debt

12 B4

Bl -

$25

Copyright © KESL 2012

Technical Debt (2)

12 B3

(a Jss (b 3

0 & Fs s

827

12

27

Bl -

El -

Technical Debt (3)

[a

s18 == [EEH +52

$5

N ss
J

Copyright © KESL 2012

.
$30

28

Copyright © 2012 by Philippe Kruchten

August 2012

13

Technical Debt August 2012

Technical Debt

» Defect = Visible feature with negative value

» Technical debt = Invisible feature with negative
value

* Cost.... of fixing

* Value of repaying technical debt, interests
loss of productivity, etc.

Copyright © KESL 2012 29

Interests (?) .

* In presence of technical debt,
cost of adding new features is higher;
velocity is lower.

* When repaying (fixing), additional cost for
retrofitting already implemented features

* Technical debt not repaid => lead to increased
cost, forever

* Cost of fixing (repaying) increases over time
M. Fowler, 2009

Copyright © KESL 2012 30

Copyright © 2012 by Philippe Kruchten 14

Technical Debt

Deferring implementation:
Value decreases

R1 R2 R3 R4

& EE S &3

Time

Copyright © KESL 2012

31

But technical debt increases over
time

R1 R2 R3 R4

o =

Time

Copyright © KESL 2012

32

Copyright © 2012 by Philippe Kruchten

August 2012

15

Technical Debt

"

Advances

Areas of further investigation

* Characterize objectively and quantitatively the
amount of technical debt in a given system

* Taxonomy of technical debt => Better detection
e Causes of technical debt => Improved prevention

* Project management strategies to control and to
cope with technical debt

* Tools and methods to deal with code smells, etc.
* Application of Real Options, Dependency

Copyright © KESL 2012

Research on TD .

Structure Matrix, or other value-based technique

35

Copyright © 2012 by Philippe Kruchten

August 2012

16

Technical Debt August 2012

e Code level debt Structural debt
(McConnell type 1) (McConnell type 2)

The
Crossroads

Copyright © KESL 2012 36

Code level

A.K.A., Code smells

Much research, though fragmented
Many tools to do static code analysis

Example: Code replication (clones)

Approach: detect + refactoring

Copyright © KESL 2012 37

Copyright © 2012 by Philippe Kruchten 17

Technical Debt

Tech Debt = Maintainability?

* Example:
— SIG (Software Improvement Group), Amsterdam

: A\" Y727
@A S T |

Copyright © KESL 2012

Debt at the Architectural Level

e Harder to detect with tools
e Less researched

* A few paths to explore:
— Dependency structure matrices

— Business Theories:
* Real Option
* Net present value

Copyright © KESL 2012

Copyright © 2012 by Philippe Kruchten

August 2012

18

Technical Debt

Real Options Theory

* Often mentioned, but rarely put in application
in software

Copyright © KESL 2012 40

TD and Real Options

Market loves it

+54M
2M 92
2 Q//
Pyt S, m— S

0\\0
Xy Market hates it

+S1M
NPV (P;) = -2M + 0.5x4M + 0.5x1M = 0.5M
Source: K. Sullivan, 2010

at TD Workshop SEI 6/2-3

Copyright © KESL 2012 41

Copyright © 2012 by Philippe Kruchten

August 2012

19

Technical Debt

TD and Real Options (2)

-1M
/Marketloves itm— S, +4M
-IM 0°

Py Sy w5, €

,O\\O
Xy Market hates it

+S1M

NPV (P,) = -1M + 0.5x3M + 0.5x1M = 1M

Taking Technical Debt has increased system value. Source: K. Sullivan, 2010

Copyright © KESL 2012 42

TD and Real Options (3)

Take Debt

-1.5M
/ Market loves it=—=2p S, +4M
1M N
Pyi Sy m—1 S, ©
Ny
N
"33 Market hates it

+S1M

NPV (P,) =-1M +0.67 x 2.5M + 0.33 x 1M = 1M

More realistically:
Debt + interest

High chances of success
Copyright © KESL 2012 43

Copyright © 2012 by Philippe Kruchten

August 2012

20

Technical Debt

Higher chance
of success

1M Ny
Pyt Sy w2 S, °
oy
8 Market hates it

+S1M

NPV (P,) =-1M +0.67 x 2.5M + 0.33 x 1M = 1M

More realistically:
Debt + interest

High chances of success
Copyright © KESL 2012

TD and Real Options (3)

-1.5M
Market loves it=m==2p S, +4M

Repay debt +

50% interest

44

Qé\%é

Favourable 4.,
//’{
>}

,O\\;

Sp T S,

Unfavourable

Not debt really, but options with different values...
Do we want to invest in architecture, in test, etc...

Copyright © KESL 2012

TD and Real Options (4)

Add feature
S IS, m— S, — .

?
s
ear
\’fe
Spg T
2d

Source: K.

N\

Sullivan, 2010

45

Copyright © 2012 by Philippe Kruchten

August 2012

21

Technical Debt August 2012

Options Theory

* Often mentioned, but rarely put in application
in software

* Not even scratched the surface
* Pay-off not obvious, though...

— Too much guesswork involved to trust results,
— Lot of work involved

Copyright © KESL 2012 46

Debt at the Architectural level

* Design Structure Matrix (DSM)
— a.k.a, Dependency Structure Matrix

* Domain Mapping Matrix (DMM)

* Tools to create and manipulate DSMs and
DMMs

Copyright © KESL 2012 47

Copyright © 2012 by Philippe Kruchten 22

Technical Debt

Dependency Structure Matrix

A

B C

Strength of

B’s
A dependencyl
on A
Strength of Strength of

C’s

A’s
B dependency dependency
onB onB

Copyright © KESL 2012

48

uso
us 02
us o3
Us o4
usos
Us 06
uso7
us 08
usos
ACT14
ACT15
ACT16
ACT17
ACT18
ACT19
ACT 20
ACT21

Dependencies for MS-Lite

® o 0 9 g =l
Z:mﬁcaimﬁgmgg.é
§E§§g§g§am§mw%
I333952388E8DES
[1]2]3]]s]e] fs]s o

B

B

| 7 XX

B

B

25 |

25 [X|

E

Copyright © KESL 2012

49

Copyright © 2012 by Philippe Kruchten

August 2012

23

Technical Debt

Dependency Structure Matrix

«
2
2
-1

HHHHH

N

=) Jetty 1 |[r2%| 78 (301 17 484 21|19 (599 5 [2 | 5 [24 |30

_E [=+[+}- org.mortbay.component 2 1% | 4 4

3 % [+]-org.mortbay.log 3 2% 4

:‘,’ [+ org.mortbay.serviet 74 6 | 2% 22

Dependency [l Suspect dependency (cycle) B -uses = [l - uses = sl fafe] |2
[53 org.mortbay jetty.deployer | - 3 o 2 [:
[53 org.mortbay jettywebapp | 1 - Nl =
org.mortbay.xml 13 bl 7 o
[53 org.mortbay.jetty.serviet 12 - 1o 12 [Lo%)
11 22 5%| 6
o j i —
[53 org.mortbay jetty.nio 1 = . o
[53 org.mortbay jetty.security 9 3 5l P T Tel e Tmslwe
[53 org.mortbay.jetty.handler 4 5 13 3 14 4|5 20 4 6 |1%
[E3 org.mortbay.jetty.bio 1
org.mortbay.io.nio 14 -
[53 org.mortbay jetty 2 6 319 2848 6 2 -
[53 org.mortbay.resource 37 A2 4|2 4
[53 org.mortbay.io.bio 1 1 -
org.mortbay.io 34 1 23 8 61 2
Copyright © KESL 2012 50

Propagation cost

* “Density” of the DSM

— Proposed by McCormack et al. in 2006

— Several limitations as a tool to measure T.D.
* Improved PC:

— Boolean to continuous value (=dependency
“strength”)

— Changes not uniformly spread throughout the
code

— Less sensitive to size of code

McCormack et al. 2006

Copyright © KESL 2012 51

Copyright © 2012 by Philippe Kruchten

August 2012

24

Technical Debt

Exploring other variations

* Size of components

— Add some weighting factor related to the size of
the component A and B, where A depends on B

* Nothing very useful so far; need more

experimentation and validation on large real
systems

Nord et al. 2012

Copyright © KESL 2012 52

85

80

75

70

65

60

55

50

45

40

Example of PC: Evolution of Ant

Technical debt reduction

!

——pc

1.4.1 151 1.5.2 153 154 1.6.0 16.1 1.7.0

Release number

Copyright © KESL 2012

Copyright © 2012 by Philippe Kruchten

August 2012

25

Technical Debt

DSM

* Value of DSM not fully explored yet
- Concept of propagation cost
— Concept of density
— Need to integrate values and costs

* Tools to produce or manipulate DSM
— Sonar)
— Lattix

* “What if” scenarios

Copyright © KESL 2012

"

“Tackling” technical debt

Copyright © 2012 by Philippe Kruchten

August 2012

26

Technical Debt

Tackling Technical Debt

Attitude, approaches found:
Ignorance is bliss

The elephant in the room
Big scary SSSS numbers
Five star ranking
Constant reduction

o Uk W e

We're agile, so we are immune!

Copyright © KESL 2012 57

lgnorance is bliss

You’re just slower, and slower, but you do not
know it, or do not know why

Velocity accumulated technical debt

N
~

N
S5

impacts ability to deliver

1 2 3 4 5 6 7

Functional requirement delivered

o N & 0 ®

Iterations

Copyright © KESL 2012 58

Copyright © 2012 by Philippe Kruchten

August 2012

27

Technical Debt

The elephant in the room

Many in the org. know
about technical tech.

Indifference: it’s
someone else’s problem

Organization broken
down in small silos

N O re a I W h O I e p ro d u Ct “Tm right there in the room, and no one even acknowledges me.”
me nta I ity The New_Vorker, 9/18/06

Short-term focus

Copyright © KESL 2012 59

Big scary SSSS numbers

Code smells 167 person days

Missing test 298 person days
* Design 670 person days
Documentation 67 person days

Totals
Work 1,202 person x days
Cost S$577,000

Copyright © KESL 2012 60

Copyright © 2012 by Philippe Kruchten

August 2012

28

Technical Debt August 2012

Static analysis + Consulting

* Cutter Consortium: Gat, et al.
— Use of Sonar, etc.
— Focused on code analysis
— TD = total value of fixing the code base

e CAST software
e ThoughtWorks

Debt analysis engagements
Debt reduction engagements

Copyright © KESL 2012 61

Issues .

* Fits the metaphor, indeed.
* Looks very objective... but...
* Subjective in:

— What is counted

— What tool to use
— Cost to fix

Not all fixes have the same resulting value.
Sunk cost are irrelevant, look into the future only.
What does it mean to be “Debt free”??

Copyright © KESL 2012 62

Copyright © 2012 by Philippe Kruchten 29

Technical Debt

. Five star ranking

Define some maintainability index

Benchmark relative to other software in the same
category

Re-assess regularly (e.g., weekly)

Look at trends, correlate changes with recent
changes in code base

SIG (Software Improvement Group), Amsterdam
Powerful tool behind

Copyright © KESL 2012 63

Constant debt reduction

Make technical debt a visible item on the
backlog

Make it visible outside of the software dev.
organization

Incorporate debt reduction as a regular
activity

Use buffer in longer term planning for yet
unidentified technical debt

Lie (?)

Copyright © KESL 2012 64

Copyright © 2012 by Philippe Kruchten

August 2012

30

Technical Debt

Buffer for debt repayment
Debt
Defect Repayment
Estimate correction
Simple work uncertainties
A later release

Copyright © 2012 by Philippe Kruchten

August 2012

31

Technical Debt

We are agile, so we’re immune!

In some cases we are agile and therefore we run faster into technical debt

Copyright © KESL 2012 67

(' Agile mottos

“Defer decision to the last responsible moment”

“YAGNI” = You Ain’t Gonna Need It
— But when you do, it is technical debt

— Technical debt often is the accumulation of too many
YAGNI decisions

“We’ll refactor this later”
“Deliver value, early”

Again the tension between the yellow stuff and
the green stuff

You’re still agile because you aren’t slowed down
by TD yet' Copyright © KESL 2012 68

Copyright © 2012 by Philippe Kruchten

August 2012

32

Technical Debt

TD: a few suggestions

Inform

Identify debt; name it

Classify debt: code quality, or structural

Assign value and cost (immediate and future)

Make it visible (put in backlog)

Prioritize with other backlog elements

Copyright © KESL 2012 69

Remember

* Technical debt is not a defect
* Technical debt is not necessarily a bad thing

Visible Invisible

. Visible Hidden,
Positive Feature architectural
Value feature

Negative Technical
Value Debt

Copyright © KESL 2012 70

Copyright © 2012 by Philippe Kruchten

August 2012

33

Technical Debt August 2012

Also...

* A suitable system architecture is not likely to
spontaneously emerge out of weekly
refactorings

* How much architecture do you need or have?

* Some novel projects need an
— Architecture owner
together with
— Product owner, and ScrumMaster

Copyright © KESL 2012 71

@ Conclusion

* Technical debt is more a rhetorical category
than a technical or ontological category.

* The concept resonates well with the
development community, and sometimes also
with management.

* It bridges the gap between business decision
makers and technical implementers.

* It’s only a metaphor; do not push it too far.

Copyright © KESL 2012 73

Copyright © 2012 by Philippe Kruchten 34

Technical Debt

o architecture code
New features f_t?ﬂ Architectural debt Low internal quality
Additional functionalit % Structural debt Code smells
K} Code complexity
_g Test debt Coding style violations
E Documentation debt

m Mostly invisible Visible

Defects
Low external quality

Copyright © KESL 2012

< Evolution issues: evolvability > < Quality issues: maintainability >

74

Upcoming events

debt November 2012

ICSE 2013, in San Francisco

— Or some other venue...
e Saturn 2013
* CompArch 2013

Copyright © KESL 2012

* Special issue of IEEE Software on Technical

* Possibly a 4t workshop on Technical Debt at

75

Copyright © 2012 by Philippe Kruchten

August 2012

35

Technical Debt

:ﬁ; References

Brown, N., Cai, Y., Guo, Y., Kazman, R., Kim, M., Kruchten, P., et al. (2010). Managing Technical
Debt in Software-Intensive Systems. Paper presented at the Future of software engineering
research (FOSER) workshop, part of Foundations of Software Engineering (FSE 2010)
conference.

Brown, N., Nord, R., Ozkaya, I., Kruchten, P., & Lim, E. (2011). Hard Choice: A game for
balancing strategy for agility. Paper presented at the 24th IEEE CS Conference on Software
Engineering Education and Training (CSEE&T 2011), Honolulu, HI, USA.

Cunningham, W. (1992). The WyCash Portfolio Management System. Paper presented at the
OOPSLA'92 conference, ACM. Retrieved from http://c2.com/doc/oopsla92.html

Curtis, B., Sappidi, J., & Szynkarski, A. (2012). Estimating the Principal of an Application’s
Technical Debt. IEEE Software, 29(6).

Denne, M., & Cleland-Huang, J. (2004). Software by Numbers: Low-Risk, High-Return
Development, Prentice Hall.

Denne, M., & Cleland-Huang, J. (2004). The Incremental Funding Method: Data-Driven
Software Development, IEEE Software, 21(3), 39-47.

Fowler, M. (2009), Technical debt quadrant, Blog post at:
http://www.martinfowler.com/bliki/TechnicalDebtQuadrant.html

Gat, I. (ed.). (2010). How to settle your technical debt--a manager's guide. Arlington Mass:
Cutter Consortium.

Kruchten, Ph. (2010) Contextualizing Agile Software Development,” Paper presented at the
EuroSPI 2010 conference in Grenoble, Sept.1-3, 2010

Copyright © KESL 2012 76

:ﬁ; References

Kruchten, P. (2011). Contextualizing Agile Software Development. Journal of Software Maintenance
and Evolution: Research and Practice. doi: 10.1002/smr.572
Kruchten, P., Nord, R., & Ozkaya, I. (2012). Technical debt: from metaphor to theory and practice.
IEEE Software, 29(6).
Kruchten, P, Nord, R., Ozkaya, ., & Visser, J. (2012). Technical Debt in Software Development: from
Metaphor to Theory--Report on the Third International Workshop on Managing Technical Debt,
held at ICSE 2012 ACM SIGSOFT Software Engineering Notes, 37(5).
Li, Z., Madhaviji, N., Murtaza, S., Gittens, M., Miranskyy, A., Godwin, D., & Cialini, E. (2011).
Characteristics of multiple-component defects and architectural hotspots: a large system case
study. Empirical Software Engineering, 16(5), 667-702. doi: 10.1007/s10664-011-9155-y
Lim, E. (2012). Technical Debt: What Software Practitioners Have to Say. (Master's thesis),
University of British Columbia, Vancouver, Canada.
Lim, E., Taksande, N., & Seaman, C. B. (2012). A Balancing Act: What Software Practitioners Have to
Say about Technical Debt. IEEE Software, 29(6).
MacCormack, A., Rusnak, J., & Baldwin, C. Y. (2006). Exploring the structure of complex software
designs: An empirical study of open source and proprietary code. Management Science, 52(7),
1015-1030.
Nord, R., Ozkaya, I., Kruchten, P., & Gonzalez, M. (2012). In search of a metric for managing
architectural technical debt. Paper presented at the Working IEEE/IFIP Conference on Software
Architecture (WICSA 2012), Helsinki, Finland.
McConnell, S. (2007) Notes on Technical Debt, Blog post at: http://blogs.construx.com/blogs/
stevemcc/archive/2007/11/01/technical-debt-2.aspx
Special issue of Cutter IT Journal on Technical Debt, edited by I. Gat (October 2010) Cutter IT
Journal, 23 (10).
Sterling, C. (2010) Managing Software Debt, Addison-Wesley.

Copyright © KESL 2012 77

Copyright © 2012 by Philippe Kruchten

August 2012

36

Technical Debt

Other sources (Talks/slides)

Gat, I., Heintz, J. (Aug. 19, 2010) Webinar: Reining in Technical Debt, Cutter
Consortium.

McConnell, S. (October 2011) Managing technical debt. Webinar

Kniberg, H. (2008) Technical debt-How not to ignore it, at Agile 2008
conference.

Kruchten, P. (2009) What colour is your backlog? Agile Vancouver
Conference. http://philippe.kruchten.com/talks

Sterling, C. (2009) http://www.slideshare.net/csterwa/managing-software-
debt-pnsqc-2009

Short, G. (2009) http://www.slideshare.net/garyshort/technical-
debt-2985889

West, D. (January 2011), Balancing agility and technical debt, Forrester &

Cast Software
Copyright © KESL 2012 @ 78

Other pointers

8 http://techdebt.org

mtechnicaldebt

http://www.ontechnicaldebt.com/

y @OnTechnicalDebt

Copyright © KESL 2012 79

Copyright © 2012 by Philippe Kruchten

August 2012

37

Technical Debt

Acknowledgements

* Research on TD partly funded by the
f; Software Engineering Institute ‘ Carnegie Mellon
— Ipek Ozkaya, Rod Nord, Nanette Brown

— They have also contributed to building this
presentation over the last 2 years.

* UBC master students Erin Lim Kam-Yan and
Marco Gonzalez-Rojas ...

— ... with some industry partners

Copyright © KESL 2012 80

Copyright © KESL 2012 81

Copyright © 2012 by Philippe Kruchten

August 2012

38

Technical Debt

Copyright © KESL 2012

82

Copyright © 2012 by Philippe Kruchten

August 2012

39

