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Outline	
  

•  What	
  is	
  technical	
  debt?	
  Several	
  viewpoints.	
  
•  The	
  technical	
  debt	
  landscape	
  
•  Structural	
  or	
  architectural	
  debt	
  
•  Research	
  on	
  technical	
  debt	
  
•  “Managing”	
  technical	
  debt	
  

•  Summary,	
  useful	
  pointers	
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Technical	
  Debt	
  

•  Concept	
  introduced	
  by	
  Ward	
  Cunningham	
  
•  O_en	
  men?oned,	
  rarely	
  studied	
  

•  All	
  experienced	
  so_ware	
  developers	
  “feel”	
  it.	
  
•  Drags	
  long-­‐lived	
  projects	
  and	
  products	
  down	
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Origin	
  of	
  the	
  metaphor	
  

•  Ward	
  Cunningham,	
  at	
  OOPSLA	
  1992	
  

	
  “Shipping	
  first	
  ?me	
  code	
  is	
  like	
  going	
  
into	
  debt.	
  A	
  liXle	
  debt	
  speeds	
  development	
  	
  
so	
  long	
  as	
  it	
  is	
  paid	
  back	
  promptly	
  with	
  a	
  	
  
rewrite…	
  
The	
  danger	
  occurs	
  when	
  the	
  debt	
  is	
  not	
  	
  
repaid.	
  Every	
  minute	
  spent	
  on	
  not-­‐quite-­‐right	
  code	
  
counts	
  as	
  interest	
  on	
  that	
  debt.	
  En?re	
  engineering	
  
organiza?ons	
  can	
  be	
  brought	
  to	
  a	
  stand-­‐s?ll	
  under	
  the	
  
debt	
  load	
  of	
  an	
  unconsolidated	
  implementa?on,	
  
object-­‐oriented	
  or	
  otherwise.”	
  

Cunningham,	
  OOPSLA	
  1992	
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Technical	
  Debt	
  (S.	
  McConnell)	
  

•  Implemented	
  features	
  (visible	
  and	
  	
  
invisible)	
  =	
  assets	
  =	
  non-­‐debt	
  

•  Type	
  1:	
  uninten?onal,	
  non-­‐strategic;	
  	
  
poor	
  design	
  decisions,	
  poor	
  coding	
  

•  Type	
  2:	
  inten?onal	
  and	
  strategic:	
  	
  
op?mize	
  for	
  the	
  present,	
  not	
  for	
  the	
  	
  
future.	
  
–  2.A	
  short-­‐term:	
  paid	
  off	
  quickly	
  (refactorings,	
  etc.)	
  

•  Large	
  chunks:	
  easy	
  to	
  track	
  
•  Many	
  small	
  bits:	
  cannot	
  track	
  

–  2.B	
  long-­‐term	
  
McConnell	
  2007	
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Technical	
  Debt	
  (M.	
  	
  Fowler)	
  

Fowler	
  2009,	
  2010	
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First	
  more	
  capabili?es	
  

First	
  more	
  infrastructure	
  

Then,	
  more	
  infrastructure	
  

Then,	
  more	
  capabili?es	
  

underes?mated	
  	
  
re-­‐architec?ng	
  costs	
  

neglected	
  cost	
  of	
  delay	
  
to	
  market	
  

need	
  to	
  monitor	
  technical	
  
debt	
  to	
  gain	
  insight	
  into	
  
life-­‐cycle	
  efficiency	
  

Example	
  

Ozkaya,	
  SEI,2010	
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Technical	
  Debt	
  (Chris	
  Sterling)	
  

•  Technical	
  Debt:	
  issues	
  found	
  in	
  the	
  code	
  
that	
  will	
  affect	
  future	
  development	
  but	
  not	
  
those	
  dealing	
  with	
  feature	
  completeness.	
  

Or	
  

•  Technical	
  Debt	
  is	
  the	
  decay	
  of	
  	
  
component	
  and	
  intercomponent	
  	
  
behaviour	
  when	
  the	
  applica?on	
  
func?onality	
  meets	
  a	
  minimum	
  	
  
standard	
  of	
  sa?sfac?on	
  for	
  the	
  customer.	
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Technical	
  Debt	
  (S.	
  McConnell)	
  

•  TD:	
  A	
  design	
  or	
  construc?on	
  
approach	
  that	
  is	
  expedient	
  in	
  the	
  
short	
  term	
  but	
  that	
  creates	
  a	
  
technical	
  context	
  in	
  which	
  the	
  
same	
  work	
  will	
  cost	
  more	
  to	
  do	
  
later	
  than	
  it	
  would	
  cost	
  to	
  do	
  now	
  

McConnell	
  2011	
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Tech	
  Debt	
  (Jim	
  Highsmith)	
  

Source:	
  Highsmith,	
  2009	
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Time	
  is	
  Money	
  (I.	
  Gat)	
  

•  Convert	
  this	
  in	
  monetary	
  terms:	
  	
  
	
  “Think	
  of	
  the	
  amount	
  of	
  money	
  the	
  	
  
borrowed	
  ?me	
  represents	
  –	
  the	
  	
  
grand	
  total	
  required	
  to	
  eliminate	
  	
  
all	
  issues	
  found	
  in	
  the	
  code”	
  

Gat	
  2010	
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Example:	
  TD	
  is	
  the	
  sum	
  of…	
  

•  Code	
  smells 	
   	
  167	
  person	
  days	
  
•  Missing	
  tests 	
   	
  298	
  person	
  days	
  
•  Design 	
   	
   	
   	
  670	
  	
  person	
  days	
  
•  Documenta?on 	
  	
  	
  67	
  person	
  days	
  	
  

Totals	
  
	
  Work 	
   	
   	
   	
   	
  1,202	
  person	
  x	
  days	
  
	
  Cost 	
   	
   	
   	
   	
  $577,000	
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Israel	
  Gat,	
  2010	
  
hXp://theagileexecu?ve.com/2010/09/20/how-­‐to-­‐break-­‐the-­‐vicious-­‐cycle-­‐of-­‐technical-­‐debt/	
  

(more)	
  
Relentless	
  
Pressure	
  

Take	
  
Technical	
  
Debt	
  

Fail	
  to	
  Pay	
  
back	
  

Technical	
  
debt	
  

Technical	
  
Debt	
  Accrues	
  

Reduced	
  
Development	
  

Team	
  
Velocity	
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Causes	
  of	
  Technical	
  Debt	
  
TECHNOLOGY 
•  Technology limitations 
•  Legacy code 
•  COTS 
•  Changes in technology 
•  Project maturity 

PROCESS 
•  Little consideration of code maintenance 
•  Unclear requirements 
•  Cutting back on process (code reviews) 
•  Little or no history of design decisions 
•  Not knowing or adopting best practices 

PEOPLE 
•  Postpone work until needed 
•  Making bad assumptions 
•  Inexperience 
•  Poor leadership/team dynamics 
•  No push-back against customers 
•  “Superstars” – egos get in the way 
•  Little knowledge transfer 
•  Know-how to safely change code 
•  Subcontractors 

PRODUCT 
•  Schedule and budget constraints 
• Poor communication between 

developers and management 
•  Changing priorities (market information) 
•  Lack of vision, plan, strategy 
•  Unclear goals, objectives and priorities 
•  Trying to make every customer happy 
•  Consequences of decisions not clear 

Lim	
  et	
  al.	
  2012	
  
16	
  Copyright	
  ©	
  KESL	
  2012	
  



Technical	
  Debt	
   August	
  2012	
  

Copyright	
  ©	
  2012	
  by	
  Philippe	
  Kruchten	
   9	
  

Technical	
  debt	
  landscape	
  

Visible	
  

New	
  features	
  

Te
ch
no

lo
gi
ca
l	
  g
ap
	
  

Architectural	
  debt	
  

Structural	
  debt	
   Code	
  smells	
  

Defects	
  Low	
  internal	
  quality	
  

Addi?onal	
  func?onality	
   Low	
  external	
  quality	
  

Mostly	
  invisible	
  

Test	
  debt	
  

Documenta?on	
  debt	
  

Evolu?on	
  issues:	
  evolvability	
   Quality	
  issues:	
  maintainability	
  

Visible	
  

architecture	
   code	
  

Code	
  complexity	
  
Coding	
  style	
  viola?ons	
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Value	
  of	
  So_ware	
  Architecture	
  

A	
  liXle	
  détour	
  

Value	
  and	
  cost	
  

•  Architecture	
  has	
  no	
  (or	
  liXle)	
  externally	
  visible	
  
“customer	
  value”	
  

•  Itera?on	
  planning	
  (backlog)	
  is	
  driven	
  by	
  
“customer	
  value”	
  

•  Ergo:	
  architectural	
  ac?vi?es	
  are	
  o_en	
  not	
  
given	
  aXen?on	
  

•  BUFD	
  &	
  YAGNI	
  &	
  Refactor!	
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Value	
  and	
  cost	
  

•  Cost	
  of	
  development	
  is	
  not	
  iden?cal	
  to	
  value	
  
•  Trying	
  to	
  assess	
  value	
  and	
  cost	
  in	
  monetary	
  
terms	
  is	
  hard	
  and	
  o_en	
  leads	
  to	
  vain	
  
arguments	
  

•  Use	
  “points”	
  	
  for	
  cost	
  and	
  “u?ls”	
  for	
  value	
  
•  Use	
  simple	
  technique(s)	
  to	
  evalua?on	
  cost	
  in	
  
points	
  and	
  value	
  in	
  u?ls.	
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What’s	
  in	
  your	
  backlog?	
  

New	
  features	
  
Added	
  
funcFonality	
  

Architectural,	
  
Structural	
  
features	
  

Defects	
   Technical	
  
Debt	
  

Visible	
   Invisible	
  

Posi?ve	
  
Value	
  

Nega?ve	
  
Value	
  

Copyright	
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TD:	
  nega?ve	
  value,	
  invisible	
  

New	
  features	
  
Added	
  
funcFonality	
  

Architectural,	
  
Structural	
  
features	
  

Defects	
   Technical	
  
Debt	
  

Visible	
   Invisible	
  

Posi?ve	
  
Value	
  

Nega?ve	
  
Value	
  

Copyright	
  ©	
  KESL	
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Technical	
  Debt	
  (1)	
  

12	
  

12	
  

a	
  

$15	
  

$5	
  

12	
  

b	
  

$16	
  

$3	
  

12	
   $18	
  

$20	
   $19	
   $18	
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Technical	
  Debt	
  (2)	
  

12	
  

12	
  

a	
  

$15	
  

$5	
  

12	
  

b	
  

$16	
  

$3	
  

12	
   $18	
  

8	
   8	
   $5	
   8	
   $8	
   8	
   $10	
  

$25	
   $27	
   $28	
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Technical	
  Debt	
  (3)	
  

12	
  

12	
  

a	
  

+$2	
  

$5	
  

12	
   $18	
  

8	
   8	
   $5	
  

$30	
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Technical	
  Debt	
  

•  Defect	
  =	
  Visible	
  feature	
  with	
  nega?ve	
  value	
  

•  Technical	
  debt	
  =	
  Invisible	
  feature	
  with	
  nega?ve	
  
value	
  

•  Cost	
  ….	
  	
  	
  of	
  fixing	
  	
  
•  Value	
  ….	
  of	
  repaying	
  technical	
  debt,	
  interests	
  
loss	
  of	
  produc?vity,	
  etc.	
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Interests	
  (?)	
  

•  In	
  presence	
  of	
  technical	
  debt,	
  
	
  cost	
  of	
  adding	
  new	
  features	
  is	
  higher;	
  
	
  velocity	
  is	
  lower.	
  

•  When	
  repaying	
  (fixing),	
  addi?onal	
  cost	
  for	
  
retrofiyng	
  already	
  implemented	
  features	
  

•  Technical	
  debt	
  not	
  repaid	
  =>	
  lead	
  to	
  increased	
  
cost,	
  forever	
  

•  Cost	
  of	
  fixing	
  (repaying)	
  increases	
  over	
  ?me	
  
M.	
  Fowler,	
  2009	
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Deferring	
  implementa?on:	
  
Value	
  decreases	
  

Time	
  

R1	
   R2	
   R3	
   R4	
  

8	
  

8	
   7.5	
   7	
   6	
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But	
  technical	
  debt	
  increases	
  over	
  
?me	
  

Time	
  

R1	
   R2	
   R3	
   R4	
  

-­‐8	
  

-­‐8	
   -­‐8.5	
   -­‐9	
   -­‐10	
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Advances	
  

Areas	
  of	
  further	
  inves?ga?on	
  

Research	
  on	
  TD	
  

•  Characterize	
  objec?vely	
  and	
  quan?ta?vely	
  the	
  
amount	
  of	
  technical	
  debt	
  in	
  a	
  given	
  system	
  

•  Taxonomy	
  of	
  technical	
  debt	
  =>	
  BeXer	
  detec?on	
  
•  Causes	
  of	
  technical	
  debt	
  =>	
  Improved	
  preven?on	
  
•  Project	
  management	
  strategies	
  to	
  control	
  and	
  to	
  
cope	
  with	
  technical	
  debt	
  

•  Tools	
  and	
  methods	
  to	
  deal	
  with	
  code	
  smells,	
  etc.	
  
•  Applica?on	
  of	
  Real	
  Op?ons,	
  Dependency	
  
Structure	
  Matrix,	
  or	
  other	
  value-­‐based	
  technique	
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•  Code	
  level	
  debt	
  
(McConnell	
  type	
  1)	
  

•  Structural	
  debt	
  
(McConnell	
  type	
  2)	
  

36	
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Code	
  level	
  

•  A.K.A.,	
  Code	
  smells	
  

•  Much	
  research,	
  though	
  fragmented	
  
•  Many	
  tools	
  to	
  do	
  sta?c	
  code	
  analysis	
  

•  Example:	
  Code	
  replica?on	
  (clones)	
  

•  Approach:	
  detect	
  +	
  refactoring	
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Tech	
  Debt	
  =	
  Maintainability?	
  

•  Example:	
  
– SIG	
  (So_ware	
  Improvement	
  Group),	
  Amsterdam	
  

38	
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Debt	
  at	
  the	
  Architectural	
  Level	
  

•  Harder	
  to	
  detect	
  with	
  tools	
  
•  Less	
  researched	
  

•  A	
  few	
  paths	
  to	
  explore:	
  
– Dependency	
  structure	
  matrices	
  
– Business	
  Theories:	
  

•  Real	
  Op?on	
  
•  Net	
  present	
  value	
  

39	
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Real	
  Op?ons	
  Theory	
  

•  O_en	
  men?oned,	
  but	
  rarely	
  put	
  in	
  applica?on	
  
in	
  so_ware	
  

40	
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TD	
  and	
  Real	
  Op?ons	
  

P1:	
   S0	
  

Market	
  loves	
  it	
  
+	
  $4M	
  

Market	
  hates	
  it	
  
+	
  $1M	
  

S1	
  

NPV	
  (P1)	
  =	
  -­‐2M	
  +	
  0.5x4M	
  +	
  0.5x1M	
  =	
  0.5M	
  

-­‐2M	
  

p=0.5	
  

p=0
.5	
  

Source:	
  K.	
  Sullivan,	
  2010	
  
at	
  	
  TD	
  Workshop	
  SEI	
  6/2-­‐3	
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TD	
  and	
  Real	
  Op?ons	
  (2)	
  

P2:	
   S0	
  

Market	
  loves	
  it	
  

Market	
  hates	
  it	
  
+	
  $1M	
  

Sd	
  

NPV	
  (P2)	
  =	
  -­‐1M	
  +	
  0.5x3M	
  +	
  0.5x1M	
  =	
  1M	
  

-­‐1M	
  

Source:	
  K.	
  Sullivan,	
  2010	
  

p=0.5	
  

p=0
.5	
  

-­‐1M	
  
S1	
   +4M	
  

Taking	
  Technical	
  Debt	
  has	
  increased	
  system	
  value.	
  

42	
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TD	
  and	
  Real	
  Op?ons	
  (3)	
  

P2:	
   S0	
  

Market	
  loves	
  it	
  

Market	
  hates	
  it	
  
+	
  $1M	
  

Sd	
  

NPV	
  (P3)	
  =	
  -­‐1M	
  +	
  0.67	
  x	
  2.5M	
  +	
  0.33	
  x	
  1M	
  =	
  1M	
  

-­‐1M	
  

p=0.33	
  

p=0
.67

	
  

-­‐1.5M	
  
S1	
   +4M	
  

More	
  realis?cally:	
  
Debt	
  +	
  interest	
  
High	
  chances	
  of	
  success	
  

Take	
  Debt	
  

Repay	
  debt	
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TD	
  and	
  Real	
  Op?ons	
  (3)	
  

P2:	
   S0	
  

Market	
  loves	
  it	
  

Market	
  hates	
  it	
  
+	
  $1M	
  

Sd	
  

NPV	
  (P3)	
  =	
  -­‐1M	
  +	
  0.67	
  x	
  2.5M	
  +	
  0.33	
  x	
  1M	
  =	
  1M	
  

-­‐1M	
  

p=0.33	
  

p=0
.67

	
  

-­‐1.5M	
  
S1	
   +4M	
  

More	
  realis?cally:	
  
Debt	
  +	
  interest	
  
High	
  chances	
  of	
  success	
  

Higher	
  chance	
  
of	
  success	
  

Repay	
  debt	
  +	
  
50%	
  interest	
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TD	
  and	
  Real	
  Op?ons	
  (4)	
  

S0	
  

Favourable	
  

Unfavourable	
  

Sd	
  

p=?	
  

p=?
	
  

S1	
   S2	
  

S2d	
  

…..	
  

…..	
  

Not	
  debt	
  really,	
  but	
  opFons	
  with	
  different	
  values…	
  	
  
Do	
  we	
  want	
  to	
  invest	
  in	
  architecture,	
  in	
  test,	
  etc…	
  

Re
fac
tor
	
  

Add	
  feature	
  

Add	
  feature	
  

?	
  

Source:	
  K.	
  Sullivan,	
  2010	
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Op?ons	
  Theory	
  

•  O_en	
  men?oned,	
  but	
  rarely	
  put	
  in	
  applica?on	
  
in	
  so_ware	
  

•  Not	
  even	
  scratched	
  the	
  surface	
  
•  Pay-­‐off	
  not	
  obvious,	
  though…	
  

– Too	
  much	
  guesswork	
  involved	
  to	
  trust	
  results,	
  	
  
– Lot	
  of	
  work	
  involved	
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Debt	
  at	
  the	
  Architectural	
  level	
  

•  Design	
  Structure	
  Matrix	
  (DSM)	
  
– a.k.a,	
  Dependency	
  Structure	
  Matrix	
  

•  Domain	
  Mapping	
  Matrix	
  (DMM)	
  

•  Tools	
  to	
  create	
  and	
  manipulate	
  DSMs	
  and	
  
DMMs	
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Dependency	
  Structure	
  Matrix	
  

A	
   B	
   C	
  

A	
  
Strength	
  of	
  
B’s	
  
dependency	
  
on	
  A	
  

B	
  
Strength	
  of	
  
A’s	
  
dependency	
  
on	
  B	
  

Strength	
  of	
  
C’s	
  
dependency	
  
on	
  B	
  

C	
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Dependencies	
  for	
  MS-­‐Lite	
  

49	
  Copyright	
  ©	
  KESL	
  2012	
  



Technical	
  Debt	
   August	
  2012	
  

Copyright	
  ©	
  2012	
  by	
  Philippe	
  Kruchten	
   24	
  

Dependency	
  Structure	
  Matrix	
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Propaga?on	
  cost	
  

•  “Density”	
  of	
  the	
  DSM	
  	
  
– Proposed	
  by	
  McCormack	
  et	
  al.	
  in	
  2006	
  
– Several	
  limita?ons	
  as	
  a	
  tool	
  to	
  measure	
  T.D.	
  

•  Improved	
  PC:	
  
– Boolean	
  to	
  con?nuous	
  value	
  (=dependency	
  
“strength”)	
  

– Changes	
  not	
  uniformly	
  spread	
  throughout	
  the	
  
code	
  

– Less	
  sensi?ve	
  to	
  size	
  of	
  code	
  
McCormack	
  et	
  al.	
  2006	
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Exploring	
  other	
  varia?ons	
  

•  Size	
  of	
  components	
  
– Add	
  some	
  weigh?ng	
  factor	
  related	
  to	
  the	
  size	
  of	
  
the	
  component	
  A	
  and	
  B,	
  where	
  A	
  depends	
  on	
  B	
  

•  Nothing	
  very	
  useful	
  so	
  far;	
  need	
  more	
  
experimenta?on	
  and	
  valida?on	
  on	
  large	
  real	
  
systems	
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Nord	
  et	
  al.	
  2012	
  

Example	
  of	
  PC:	
  Evolu?on	
  of	
  Ant	
  
Technical	
  debt	
  reduc@on	
  

Release	
  number	
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DSM	
  

•  Value	
  of	
  DSM	
  not	
  fully	
  explored	
  yet	
  
– Concept	
  of	
  propaga?on	
  cost	
  
– Concept	
  of	
  density	
  
– Need	
  to	
  integrate	
  values	
  and	
  costs	
  

•  Tools	
  to	
  produce	
  or	
  manipulate	
  DSM	
  
– SonarJ	
  
– Layx	
  

•  “What	
  if”	
  scenarios	
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Tackling	
  Technical	
  Debt	
  

Aytude,	
  approaches	
  found:	
  
1.  Ignorance	
  is	
  bliss	
  
2.  The	
  elephant	
  in	
  the	
  room	
  

3.  Big	
  scary	
  $$$$	
  numbers	
  

4.  Five	
  star	
  ranking	
  
5.  Constant	
  reduc?on	
  
6.  We’re	
  agile,	
  so	
  we	
  are	
  immune!	
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Ignorance	
  is	
  bliss	
  

You’re	
  just	
  slower,	
  and	
  slower,	
  but	
  you	
  do	
  not	
  
know	
  it,	
  or	
  do	
  not	
  know	
  why	
  

0	
  

2	
  

4	
  

6	
  

8	
  

10	
  

12	
  

1	
   2	
   3	
   4	
   5	
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   7	
  

Fu
nc
F
on

al
	
  re

qu
ir
em

en
t	
  d

el
iv
er
ed

	
  

IteraFons	
  

Velocity	
   accumulated	
  technical	
  debt	
  
impacts	
  ability	
  to	
  deliver	
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The	
  elephant	
  in	
  the	
  room	
  

•  Many	
  in	
  the	
  org.	
  know	
  
about	
  technical	
  tech.	
  

•  Indifference:	
  it’s	
  
someone	
  else’s	
  problem	
  

•  Organiza?on	
  broken	
  
down	
  in	
  small	
  silos	
  

•  No	
  real	
  whole	
  product	
  
mentality	
  

•  Short-­‐term	
  focus	
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Big	
  scary	
  $$$$	
  numbers	
  

•  Code	
  smells 	
   	
  167	
  person	
  days	
  
•  Missing	
  test 	
   	
  298	
  person	
  days	
  
•  Design 	
   	
   	
   	
  670	
  	
  person	
  days	
  
•  Documenta?on 	
  	
  	
  67	
  person	
  days	
  	
  

Totals	
  
	
  Work 	
   	
   	
   	
   	
  1,202	
  person	
  x	
  days	
  
	
  Cost 	
   	
   	
   	
   	
  $577,000	
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Sta?c	
  analysis	
  +	
  Consul?ng	
  

•  CuXer	
  Consor?um:	
  Gat,	
  et	
  al.	
  
– Use	
  of	
  Sonar,	
  etc.	
  
– Focused	
  on	
  code	
  analysis	
  
– TD	
  =	
  total	
  value	
  of	
  fixing	
  the	
  code	
  base	
  

•  CAST	
  so_ware	
  
•  ThoughtWorks	
  	
  

Debt	
  analysis	
  engagements	
  
Debt	
  reduc?on	
  engagements	
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Issues	
  

•  Fits	
  the	
  metaphor,	
  indeed.	
  	
  
•  Looks	
  very	
  objec?ve…	
  but…	
  
•  Subjec?ve	
  in:	
  

– What	
  is	
  counted	
  
– What	
  tool	
  to	
  use	
  
–  Cost	
  to	
  fix	
  

Not	
  all	
  fixes	
  have	
  the	
  same	
  resul?ng	
  value.	
  
Sunk	
  cost	
  are	
  irrelevant,	
  look	
  into	
  the	
  future	
  only.	
  
What	
  does	
  it	
  mean	
  to	
  be	
  “Debt	
  free”??	
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Five	
  star	
  ranking	
  

•  Define	
  some	
  maintainability	
  index	
  

•  Benchmark	
  rela?ve	
  to	
  other	
  so_ware	
  in	
  the	
  same	
  
category	
  

•  Re-­‐assess	
  regularly	
  (e.g.,	
  weekly)	
  
•  Look	
  at	
  trends,	
  correlate	
  changes	
  with	
  recent	
  
changes	
  in	
  code	
  base	
  

•  SIG	
  (So_ware	
  Improvement	
  Group),	
  Amsterdam	
  

•  Powerful	
  tool	
  behind	
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Constant	
  debt	
  reduc?on	
  

•  Make	
  technical	
  debt	
  a	
  visible	
  item	
  on	
  the	
  
backlog	
  

•  Make	
  it	
  visible	
  outside	
  of	
  the	
  so_ware	
  dev.	
  
organiza?on	
  

•  Incorporate	
  debt	
  reduc?on	
  as	
  a	
  regular	
  
ac?vity	
  

•  Use	
  buffer	
  in	
  longer	
  term	
  planning	
  for	
  yet	
  
uniden?fied	
  technical	
  debt	
  

•  Lie	
  (?)	
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Buffer	
  for	
  debt	
  repayment	
  

Simple	
  work	
  
Es?mate	
  	
  
uncertain?es	
  

Defect	
  	
  
correc?on	
  

Debt	
  
Repayment	
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A	
  later	
  release	
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We	
  are	
  agile,	
  so	
  we’re	
  immune!	
  

In	
  some	
  cases	
  we	
  are	
  agile	
  and	
  therefore	
  we	
  run	
  faster	
  into	
  technical	
  debt	
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Agile	
  moXos	
  

•  “Defer	
  decision	
  to	
  the	
  last	
  responsible	
  moment”	
  
•  “YAGNI”	
  =	
  You	
  Ain’t	
  Gonna	
  Need	
  It	
  

–  But	
  when	
  you	
  do,	
  it	
  is	
  technical	
  debt	
  
–  Technical	
  debt	
  o_en	
  is	
  the	
  accumula?on	
  of	
  too	
  many	
  
YAGNI	
  decisions	
  

•  “We’ll	
  refactor	
  this	
  later”	
  
•  “Deliver	
  value,	
  early”	
  
•  Again	
  the	
  tension	
  between	
  the	
  yellow	
  stuff	
  and	
  
the	
  green	
  stuff	
  

•  You’re	
  s@ll	
  agile	
  because	
  you	
  aren’t	
  slowed	
  down	
  
by	
  TD	
  yet.	
   68	
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TD:	
  a	
  few	
  sugges?ons	
  

•  Inform	
  

•  Iden?fy	
  debt;	
  name	
  it	
  

•  Classify	
  debt:	
  code	
  quality,	
  or	
  structural	
  
•  Assign	
  value	
  and	
  cost	
  (immediate	
  and	
  future)	
  

•  Make	
  it	
  visible	
  (put	
  in	
  backlog)	
  

•  Priori?ze	
  with	
  other	
  backlog	
  elements	
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Remember	
  

•  Technical	
  debt	
  is	
  not	
  a	
  defect	
  
•  Technical	
  debt	
  is	
  not	
  necessarily	
  a	
  bad	
  thing	
  

Visible	
  
Feature	
  

Hidden,	
  
architectural	
  
feature	
  

Visible	
  
defect	
  

Technical	
  
Debt	
  

Visible	
   Invisible	
  

Posi?ve	
  
Value	
  

Nega?ve	
  
Value	
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Also…	
  

•  A	
  suitable	
  system	
  architecture	
  is	
  not	
  likely	
  to	
  
spontaneously	
  emerge	
  out	
  of	
  weekly	
  
refactorings	
  

•  How	
  much	
  architecture	
  do	
  you	
  need	
  or	
  have?	
  

•  Some	
  novel	
  projects	
  need	
  an	
  
– Architecture	
  owner	
  

	
  	
   	
  together	
  with	
  
– Product	
  owner,	
  and	
  ScrumMaster	
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Conclusion	
  

•  Technical	
  debt	
  is	
  more	
  a	
  rhetorical	
  category	
  
than	
  a	
  technical	
  or	
  ontological	
  category.	
  	
  

•  The	
  concept	
  	
  resonates	
  well	
  with	
  the	
  
development	
  community,	
  and	
  some?mes	
  also	
  
with	
  management.	
  

•  It	
  bridges	
  the	
  gap	
  between	
  business	
  decision	
  
makers	
  and	
  technical	
  implementers.	
  

•  It’s	
  only	
  a	
  metaphor;	
  do	
  not	
  push	
  it	
  too	
  far.	
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Visible	
  

New	
  features	
  

Te
ch
no

lo
gi
ca
l	
  g
ap
	
  

Architectural	
  debt	
  

Structural	
  debt	
   Code	
  smells	
  

Defects	
  Low	
  internal	
  quality	
  

Addi?onal	
  func?onality	
   Low	
  external	
  quality	
  

Mostly	
  invisible	
  

Test	
  debt	
  

Documenta?on	
  debt	
  

Evolu?on	
  issues:	
  evolvability	
   Quality	
  issues:	
  maintainability	
  

Visible	
  

architecture	
   code	
  

Code	
  complexity	
  
Coding	
  style	
  viola?ons	
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Upcoming	
  events	
  

•  Special	
  issue	
  of	
  IEEE	
  So_ware	
  on	
  Technical	
  
debt	
  November	
  2012	
  

•  Possibly	
  a	
  4th	
  workshop	
  on	
  Technical	
  Debt	
  at	
  
ICSE	
  2013,	
  in	
  San	
  Francisco	
  
– Or	
  some	
  other	
  venue…	
  

•  Saturn	
  2013	
  
•  CompArch	
  2013	
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