
Technical	
 Debt	
 August	
 2012	

Copyright	
 ©	
 2012	
 by	
 Philippe	
 Kruchten	
 1	

Technical	
 Debt	

from	
 metaphor	
 to	
 theory	
 and	
 prac?ce	

Philippe	
 Kruchten	

Helsinki,	
 August	
 21st	
 2012	

Philippe	
 Kruchten,	
 Ph.D.,	
 P.Eng.,	
 CSDP	

Professor	
 of	
 So)ware	
 Engineering	

NSERC	
 Chair	
 in	
 Design	
 Engineering	

Department	
 of	
 Electrical	
 and	
 Computer	
 Engineering	

University	
 of	
 Bri?sh	
 Columbia	

Vancouver,	
 BC	
 Canada	

pbk@ece.ubc.ca	

	
 	
 	
 	

Founder	
 and	
 president	

Kruchten	
 Engineering	
 Services	
 Ltd	

Vancouver,	
 BC	
 Canada	
 	

philippe@kruchten.com	

2	

Copyright	
 ©	
 KESL	
 2012	

Technical	
 Debt	
 August	
 2012	

Copyright	
 ©	
 2012	
 by	
 Philippe	
 Kruchten	
 2	

Outline	

•  What	
 is	
 technical	
 debt?	
 Several	
 viewpoints.	

•  The	
 technical	
 debt	
 landscape	

•  Structural	
 or	
 architectural	
 debt	

•  Research	
 on	
 technical	
 debt	

•  “Managing”	
 technical	
 debt	

•  Summary,	
 useful	
 pointers	

3	
 Copyright	
 ©	
 KESL	
 2012	

Acknowledgements	

•  Research	
 on	
 TD	
 partly	
 funded	
 by	
 the	
 	

–  Ipek	
 Ozkaya,	
 Rod	
 Nord,	
 NaneXe	
 Brown	

– They	
 have	
 also	
 contributed	
 to	
 building	
 this	

presenta?on	
 over	
 the	
 last	
 2	
 years.	

•  UBC	
 master	
 students	
 Erin	
 Lim	
 Kam-­‐Yan	
 and	

Marco	
 Gonzalez-­‐Rojas	
 …	

– …	
 with	
 some	
 industry	
 partners	

4	
 Copyright	
 ©	
 KESL	
 2012	

Technical	
 Debt	
 August	
 2012	

Copyright	
 ©	
 2012	
 by	
 Philippe	
 Kruchten	
 3	

Technical	
 Debt	

•  Concept	
 introduced	
 by	
 Ward	
 Cunningham	

•  O_en	
 men?oned,	
 rarely	
 studied	

•  All	
 experienced	
 so_ware	
 developers	
 “feel”	
 it.	

•  Drags	
 long-­‐lived	
 projects	
 and	
 products	
 down	

5	
 Copyright	
 ©	
 KESL	
 2012	

Origin	
 of	
 the	
 metaphor	

•  Ward	
 Cunningham,	
 at	
 OOPSLA	
 1992	

	
 “Shipping	
 first	
 ?me	
 code	
 is	
 like	
 going	

into	
 debt.	
 A	
 liXle	
 debt	
 speeds	
 development	
 	

so	
 long	
 as	
 it	
 is	
 paid	
 back	
 promptly	
 with	
 a	
 	

rewrite…	

The	
 danger	
 occurs	
 when	
 the	
 debt	
 is	
 not	
 	

repaid.	
 Every	
 minute	
 spent	
 on	
 not-­‐quite-­‐right	
 code	

counts	
 as	
 interest	
 on	
 that	
 debt.	
 En?re	
 engineering	

organiza?ons	
 can	
 be	
 brought	
 to	
 a	
 stand-­‐s?ll	
 under	
 the	

debt	
 load	
 of	
 an	
 unconsolidated	
 implementa?on,	

object-­‐oriented	
 or	
 otherwise.”	

Cunningham,	
 OOPSLA	
 1992	

6	
 Copyright	
 ©	
 KESL	
 2012	

Technical	
 Debt	
 August	
 2012	

Copyright	
 ©	
 2012	
 by	
 Philippe	
 Kruchten	
 4	

Technical	
 Debt	
 (S.	
 McConnell)	

•  Implemented	
 features	
 (visible	
 and	
 	

invisible)	
 =	
 assets	
 =	
 non-­‐debt	

•  Type	
 1:	
 uninten?onal,	
 non-­‐strategic;	
 	

poor	
 design	
 decisions,	
 poor	
 coding	

•  Type	
 2:	
 inten?onal	
 and	
 strategic:	
 	

op?mize	
 for	
 the	
 present,	
 not	
 for	
 the	
 	

future.	

–  2.A	
 short-­‐term:	
 paid	
 off	
 quickly	
 (refactorings,	
 etc.)	

•  Large	
 chunks:	
 easy	
 to	
 track	

•  Many	
 small	
 bits:	
 cannot	
 track	

–  2.B	
 long-­‐term	

McConnell	
 2007	

7	
 Copyright	
 ©	
 KESL	
 2012	

Technical	
 Debt	
 (M.	
 	
 Fowler)	

Fowler	
 2009,	
 2010	

8	
 Copyright	
 ©	
 KESL	
 2012	

Technical	
 Debt	
 August	
 2012	

Copyright	
 ©	
 2012	
 by	
 Philippe	
 Kruchten	
 5	

First	
 more	
 capabili?es	

First	
 more	
 infrastructure	

Then,	
 more	
 infrastructure	

Then,	
 more	
 capabili?es	

underes?mated	
 	

re-­‐architec?ng	
 costs	

neglected	
 cost	
 of	
 delay	

to	
 market	

need	
 to	
 monitor	
 technical	

debt	
 to	
 gain	
 insight	
 into	

life-­‐cycle	
 efficiency	

Example	

Ozkaya,	
 SEI,2010	
 9	
 Copyright	
 ©	
 KESL	
 2012	

Technical	
 Debt	
 (Chris	
 Sterling)	

•  Technical	
 Debt:	
 issues	
 found	
 in	
 the	
 code	

that	
 will	
 affect	
 future	
 development	
 but	
 not	

those	
 dealing	
 with	
 feature	
 completeness.	

Or	

•  Technical	
 Debt	
 is	
 the	
 decay	
 of	
 	

component	
 and	
 intercomponent	
 	

behaviour	
 when	
 the	
 applica?on	

func?onality	
 meets	
 a	
 minimum	
 	

standard	
 of	
 sa?sfac?on	
 for	
 the	
 customer.	

10	
 Copyright	
 ©	
 KESL	
 2012	

Technical	
 Debt	
 August	
 2012	

Copyright	
 ©	
 2012	
 by	
 Philippe	
 Kruchten	
 6	

Technical	
 Debt	
 (S.	
 McConnell)	

•  TD:	
 A	
 design	
 or	
 construc?on	

approach	
 that	
 is	
 expedient	
 in	
 the	

short	
 term	
 but	
 that	
 creates	
 a	

technical	
 context	
 in	
 which	
 the	

same	
 work	
 will	
 cost	
 more	
 to	
 do	

later	
 than	
 it	
 would	
 cost	
 to	
 do	
 now	

McConnell	
 2011	

11	
 Copyright	
 ©	
 KESL	
 2012	

Tech	
 Debt	
 (Jim	
 Highsmith)	

Source:	
 Highsmith,	
 2009	
 12	
 Copyright	
 ©	
 KESL	
 2012	

Technical	
 Debt	
 August	
 2012	

Copyright	
 ©	
 2012	
 by	
 Philippe	
 Kruchten	
 7	

Time	
 is	
 Money	
 (I.	
 Gat)	

•  Convert	
 this	
 in	
 monetary	
 terms:	
 	

	
 “Think	
 of	
 the	
 amount	
 of	
 money	
 the	
 	

borrowed	
 ?me	
 represents	
 –	
 the	
 	

grand	
 total	
 required	
 to	
 eliminate	
 	

all	
 issues	
 found	
 in	
 the	
 code”	

Gat	
 2010	

13	
 Copyright	
 ©	
 KESL	
 2012	

Example:	
 TD	
 is	
 the	
 sum	
 of…	

•  Code	
 smells 	
 	
 167	
 person	
 days	

•  Missing	
 tests 	
 	
 298	
 person	
 days	

•  Design 	
 	
 	
 	
 670	
 	
 person	
 days	

•  Documenta?on 	
 	
 	
 67	
 person	
 days	
 	

Totals	

	
 Work 	
 	
 	
 	
 	
 1,202	
 person	
 x	
 days	

	
 Cost 	
 	
 	
 	
 	
 $577,000	

14	
 Copyright	
 ©	
 KESL	
 2012	

Technical	
 Debt	
 August	
 2012	

Copyright	
 ©	
 2012	
 by	
 Philippe	
 Kruchten	
 8	

Israel	
 Gat,	
 2010	

hXp://theagileexecu?ve.com/2010/09/20/how-­‐to-­‐break-­‐the-­‐vicious-­‐cycle-­‐of-­‐technical-­‐debt/	

(more)	

Relentless	

Pressure	

Take	

Technical	

Debt	

Fail	
 to	
 Pay	

back	

Technical	

debt	

Technical	

Debt	
 Accrues	

Reduced	

Development	

Team	

Velocity	

15	
 Copyright	
 ©	
 KESL	
 2012	

Causes	
 of	
 Technical	
 Debt	

TECHNOLOGY
•  Technology limitations
•  Legacy code
•  COTS
•  Changes in technology
•  Project maturity

PROCESS
•  Little consideration of code maintenance
•  Unclear requirements
•  Cutting back on process (code reviews)
•  Little or no history of design decisions
•  Not knowing or adopting best practices

PEOPLE
•  Postpone work until needed
•  Making bad assumptions
•  Inexperience
•  Poor leadership/team dynamics
•  No push-back against customers
•  “Superstars” – egos get in the way
•  Little knowledge transfer
•  Know-how to safely change code
•  Subcontractors

PRODUCT
•  Schedule and budget constraints
• Poor communication between

developers and management
•  Changing priorities (market information)
•  Lack of vision, plan, strategy
•  Unclear goals, objectives and priorities
•  Trying to make every customer happy
•  Consequences of decisions not clear

Lim	
 et	
 al.	
 2012	

16	
 Copyright	
 ©	
 KESL	
 2012	

Technical	
 Debt	
 August	
 2012	

Copyright	
 ©	
 2012	
 by	
 Philippe	
 Kruchten	
 9	

Technical	
 debt	
 landscape	

Visible	

New	
 features	

Te
ch
no

lo
gi
ca
l	
 g
ap
	

Architectural	
 debt	

Structural	
 debt	
 Code	
 smells	

Defects	
 Low	
 internal	
 quality	

Addi?onal	
 func?onality	
 Low	
 external	
 quality	

Mostly	
 invisible	

Test	
 debt	

Documenta?on	
 debt	

Evolu?on	
 issues:	
 evolvability	
 Quality	
 issues:	
 maintainability	

Visible	

architecture	
 code	

Code	
 complexity	

Coding	
 style	
 viola?ons	

19	
 Copyright	
 ©	
 KESL	
 2012	

Technical	
 Debt	
 August	
 2012	

Copyright	
 ©	
 2012	
 by	
 Philippe	
 Kruchten	
 10	

Value	
 of	
 So_ware	
 Architecture	

A	
 liXle	
 détour	

Value	
 and	
 cost	

•  Architecture	
 has	
 no	
 (or	
 liXle)	
 externally	
 visible	

“customer	
 value”	

•  Itera?on	
 planning	
 (backlog)	
 is	
 driven	
 by	

“customer	
 value”	

•  Ergo:	
 architectural	
 ac?vi?es	
 are	
 o_en	
 not	

given	
 aXen?on	

•  BUFD	
 &	
 YAGNI	
 &	
 Refactor!	

22	
 Copyright	
 ©	
 KESL	
 2012	

Technical	
 Debt	
 August	
 2012	

Copyright	
 ©	
 2012	
 by	
 Philippe	
 Kruchten	
 11	

Value	
 and	
 cost	

•  Cost	
 of	
 development	
 is	
 not	
 iden?cal	
 to	
 value	

•  Trying	
 to	
 assess	
 value	
 and	
 cost	
 in	
 monetary	

terms	
 is	
 hard	
 and	
 o_en	
 leads	
 to	
 vain	

arguments	

•  Use	
 “points”	
 	
 for	
 cost	
 and	
 “u?ls”	
 for	
 value	

•  Use	
 simple	
 technique(s)	
 to	
 evalua?on	
 cost	
 in	

points	
 and	
 value	
 in	
 u?ls.	

23	
 Copyright	
 ©	
 KESL	
 2012	

What’s	
 in	
 your	
 backlog?	

New	
 features	

Added	

funcFonality	

Architectural,	

Structural	

features	

Defects	
 Technical	

Debt	

Visible	
 Invisible	

Posi?ve	

Value	

Nega?ve	

Value	

Copyright	
 ©	
 KESL	
 2012	
 24	

Technical	
 Debt	
 August	
 2012	

Copyright	
 ©	
 2012	
 by	
 Philippe	
 Kruchten	
 12	

TD:	
 nega?ve	
 value,	
 invisible	

New	
 features	

Added	

funcFonality	

Architectural,	

Structural	

features	

Defects	
 Technical	

Debt	

Visible	
 Invisible	

Posi?ve	

Value	

Nega?ve	

Value	

Copyright	
 ©	
 KESL	
 2012	
 25	

Technical	
 Debt	
 (1)	

12	

12	

a	

$15	

$5	

12	

b	

$16	

$3	

12	
 $18	

$20	
 $19	
 $18	

26	
 Copyright	
 ©	
 KESL	
 2012	

Technical	
 Debt	
 August	
 2012	

Copyright	
 ©	
 2012	
 by	
 Philippe	
 Kruchten	
 13	

Technical	
 Debt	
 (2)	

12	

12	

a	

$15	

$5	

12	

b	

$16	

$3	

12	
 $18	

8	
 8	
 $5	
 8	
 $8	
 8	
 $10	

$25	
 $27	
 $28	

27	
 Copyright	
 ©	
 KESL	
 2012	

Technical	
 Debt	
 (3)	

12	

12	

a	

+$2	

$5	

12	
 $18	

8	
 8	
 $5	

$30	

28	
 Copyright	
 ©	
 KESL	
 2012	

Technical	
 Debt	
 August	
 2012	

Copyright	
 ©	
 2012	
 by	
 Philippe	
 Kruchten	
 14	

Technical	
 Debt	

•  Defect	
 =	
 Visible	
 feature	
 with	
 nega?ve	
 value	

•  Technical	
 debt	
 =	
 Invisible	
 feature	
 with	
 nega?ve	

value	

•  Cost	
 ….	
 	
 	
 of	
 fixing	
 	

•  Value	
 ….	
 of	
 repaying	
 technical	
 debt,	
 interests	

loss	
 of	
 produc?vity,	
 etc.	

29	
 Copyright	
 ©	
 KESL	
 2012	

Interests	
 (?)	

•  In	
 presence	
 of	
 technical	
 debt,	

	
 cost	
 of	
 adding	
 new	
 features	
 is	
 higher;	

	
 velocity	
 is	
 lower.	

•  When	
 repaying	
 (fixing),	
 addi?onal	
 cost	
 for	

retrofiyng	
 already	
 implemented	
 features	

•  Technical	
 debt	
 not	
 repaid	
 =>	
 lead	
 to	
 increased	

cost,	
 forever	

•  Cost	
 of	
 fixing	
 (repaying)	
 increases	
 over	
 ?me	

M.	
 Fowler,	
 2009	

30	
 Copyright	
 ©	
 KESL	
 2012	

Technical	
 Debt	
 August	
 2012	

Copyright	
 ©	
 2012	
 by	
 Philippe	
 Kruchten	
 15	

Deferring	
 implementa?on:	

Value	
 decreases	

Time	

R1	
 R2	
 R3	
 R4	

8	

8	
 7.5	
 7	
 6	

31	
 Copyright	
 ©	
 KESL	
 2012	

But	
 technical	
 debt	
 increases	
 over	

?me	

Time	

R1	
 R2	
 R3	
 R4	

-­‐8	

-­‐8	
 -­‐8.5	
 -­‐9	
 -­‐10	

32	
 Copyright	
 ©	
 KESL	
 2012	

Technical	
 Debt	
 August	
 2012	

Copyright	
 ©	
 2012	
 by	
 Philippe	
 Kruchten	
 16	

Advances	

Areas	
 of	
 further	
 inves?ga?on	

Research	
 on	
 TD	

•  Characterize	
 objec?vely	
 and	
 quan?ta?vely	
 the	

amount	
 of	
 technical	
 debt	
 in	
 a	
 given	
 system	

•  Taxonomy	
 of	
 technical	
 debt	
 =>	
 BeXer	
 detec?on	

•  Causes	
 of	
 technical	
 debt	
 =>	
 Improved	
 preven?on	

•  Project	
 management	
 strategies	
 to	
 control	
 and	
 to	

cope	
 with	
 technical	
 debt	

•  Tools	
 and	
 methods	
 to	
 deal	
 with	
 code	
 smells,	
 etc.	

•  Applica?on	
 of	
 Real	
 Op?ons,	
 Dependency	

Structure	
 Matrix,	
 or	
 other	
 value-­‐based	
 technique	

35	
 Copyright	
 ©	
 KESL	
 2012	

Technical	
 Debt	
 August	
 2012	

Copyright	
 ©	
 2012	
 by	
 Philippe	
 Kruchten	
 17	

•  Code	
 level	
 debt	

(McConnell	
 type	
 1)	

•  Structural	
 debt	

(McConnell	
 type	
 2)	

36	
 Copyright	
 ©	
 KESL	
 2012	

Code	
 level	

•  A.K.A.,	
 Code	
 smells	

•  Much	
 research,	
 though	
 fragmented	

•  Many	
 tools	
 to	
 do	
 sta?c	
 code	
 analysis	

•  Example:	
 Code	
 replica?on	
 (clones)	

•  Approach:	
 detect	
 +	
 refactoring	

37	
 Copyright	
 ©	
 KESL	
 2012	

Technical	
 Debt	
 August	
 2012	

Copyright	
 ©	
 2012	
 by	
 Philippe	
 Kruchten	
 18	

Tech	
 Debt	
 =	
 Maintainability?	

•  Example:	

– SIG	
 (So_ware	
 Improvement	
 Group),	
 Amsterdam	

38	
 Copyright	
 ©	
 KESL	
 2012	

Debt	
 at	
 the	
 Architectural	
 Level	

•  Harder	
 to	
 detect	
 with	
 tools	

•  Less	
 researched	

•  A	
 few	
 paths	
 to	
 explore:	

– Dependency	
 structure	
 matrices	

– Business	
 Theories:	

•  Real	
 Op?on	

•  Net	
 present	
 value	

39	
 Copyright	
 ©	
 KESL	
 2012	

Technical	
 Debt	
 August	
 2012	

Copyright	
 ©	
 2012	
 by	
 Philippe	
 Kruchten	
 19	

Real	
 Op?ons	
 Theory	

•  O_en	
 men?oned,	
 but	
 rarely	
 put	
 in	
 applica?on	

in	
 so_ware	

40	
 Copyright	
 ©	
 KESL	
 2012	

TD	
 and	
 Real	
 Op?ons	

P1:	
 S0	

Market	
 loves	
 it	

+	
 $4M	

Market	
 hates	
 it	

+	
 $1M	

S1	

NPV	
 (P1)	
 =	
 -­‐2M	
 +	
 0.5x4M	
 +	
 0.5x1M	
 =	
 0.5M	

-­‐2M	

p=0.5	

p=0
.5	

Source:	
 K.	
 Sullivan,	
 2010	

at	
 	
 TD	
 Workshop	
 SEI	
 6/2-­‐3	

41	
 Copyright	
 ©	
 KESL	
 2012	

Technical	
 Debt	
 August	
 2012	

Copyright	
 ©	
 2012	
 by	
 Philippe	
 Kruchten	
 20	

TD	
 and	
 Real	
 Op?ons	
 (2)	

P2:	
 S0	

Market	
 loves	
 it	

Market	
 hates	
 it	

+	
 $1M	

Sd	

NPV	
 (P2)	
 =	
 -­‐1M	
 +	
 0.5x3M	
 +	
 0.5x1M	
 =	
 1M	

-­‐1M	

Source:	
 K.	
 Sullivan,	
 2010	

p=0.5	

p=0
.5	

-­‐1M	

S1	
 +4M	

Taking	
 Technical	
 Debt	
 has	
 increased	
 system	
 value.	

42	
 Copyright	
 ©	
 KESL	
 2012	

TD	
 and	
 Real	
 Op?ons	
 (3)	

P2:	
 S0	

Market	
 loves	
 it	

Market	
 hates	
 it	

+	
 $1M	

Sd	

NPV	
 (P3)	
 =	
 -­‐1M	
 +	
 0.67	
 x	
 2.5M	
 +	
 0.33	
 x	
 1M	
 =	
 1M	

-­‐1M	

p=0.33	

p=0
.67

	

-­‐1.5M	

S1	
 +4M	

More	
 realis?cally:	

Debt	
 +	
 interest	

High	
 chances	
 of	
 success	

Take	
 Debt	

Repay	
 debt	

43	
 Copyright	
 ©	
 KESL	
 2012	

Technical	
 Debt	
 August	
 2012	

Copyright	
 ©	
 2012	
 by	
 Philippe	
 Kruchten	
 21	

TD	
 and	
 Real	
 Op?ons	
 (3)	

P2:	
 S0	

Market	
 loves	
 it	

Market	
 hates	
 it	

+	
 $1M	

Sd	

NPV	
 (P3)	
 =	
 -­‐1M	
 +	
 0.67	
 x	
 2.5M	
 +	
 0.33	
 x	
 1M	
 =	
 1M	

-­‐1M	

p=0.33	

p=0
.67

	

-­‐1.5M	

S1	
 +4M	

More	
 realis?cally:	

Debt	
 +	
 interest	

High	
 chances	
 of	
 success	

Higher	
 chance	

of	
 success	

Repay	
 debt	
 +	

50%	
 interest	

44	
 Copyright	
 ©	
 KESL	
 2012	

TD	
 and	
 Real	
 Op?ons	
 (4)	

S0	

Favourable	

Unfavourable	

Sd	

p=?	

p=?
	

S1	
 S2	

S2d	

…..	

…..	

Not	
 debt	
 really,	
 but	
 opFons	
 with	
 different	
 values…	
 	

Do	
 we	
 want	
 to	
 invest	
 in	
 architecture,	
 in	
 test,	
 etc…	

Re
fac
tor
	

Add	
 feature	

Add	
 feature	

?	

Source:	
 K.	
 Sullivan,	
 2010	

45	
 Copyright	
 ©	
 KESL	
 2012	

Technical	
 Debt	
 August	
 2012	

Copyright	
 ©	
 2012	
 by	
 Philippe	
 Kruchten	
 22	

Op?ons	
 Theory	

•  O_en	
 men?oned,	
 but	
 rarely	
 put	
 in	
 applica?on	

in	
 so_ware	

•  Not	
 even	
 scratched	
 the	
 surface	

•  Pay-­‐off	
 not	
 obvious,	
 though…	

– Too	
 much	
 guesswork	
 involved	
 to	
 trust	
 results,	
 	

– Lot	
 of	
 work	
 involved	

46	
 Copyright	
 ©	
 KESL	
 2012	

Debt	
 at	
 the	
 Architectural	
 level	

•  Design	
 Structure	
 Matrix	
 (DSM)	

– a.k.a,	
 Dependency	
 Structure	
 Matrix	

•  Domain	
 Mapping	
 Matrix	
 (DMM)	

•  Tools	
 to	
 create	
 and	
 manipulate	
 DSMs	
 and	

DMMs	

47	
 Copyright	
 ©	
 KESL	
 2012	

Technical	
 Debt	
 August	
 2012	

Copyright	
 ©	
 2012	
 by	
 Philippe	
 Kruchten	
 23	

Dependency	
 Structure	
 Matrix	

A	
 B	
 C	

A	

Strength	
 of	

B’s	

dependency	

on	
 A	

B	

Strength	
 of	

A’s	

dependency	

on	
 B	

Strength	
 of	

C’s	

dependency	

on	
 B	

C	

48	
 Copyright	
 ©	
 KESL	
 2012	

Dependencies	
 for	
 MS-­‐Lite	

49	
 Copyright	
 ©	
 KESL	
 2012	

Technical	
 Debt	
 August	
 2012	

Copyright	
 ©	
 2012	
 by	
 Philippe	
 Kruchten	
 24	

Dependency	
 Structure	
 Matrix	

50	
 Copyright	
 ©	
 KESL	
 2012	

Propaga?on	
 cost	

•  “Density”	
 of	
 the	
 DSM	
 	

– Proposed	
 by	
 McCormack	
 et	
 al.	
 in	
 2006	

– Several	
 limita?ons	
 as	
 a	
 tool	
 to	
 measure	
 T.D.	

•  Improved	
 PC:	

– Boolean	
 to	
 con?nuous	
 value	
 (=dependency	

“strength”)	

– Changes	
 not	
 uniformly	
 spread	
 throughout	
 the	

code	

– Less	
 sensi?ve	
 to	
 size	
 of	
 code	

McCormack	
 et	
 al.	
 2006	

51	
 Copyright	
 ©	
 KESL	
 2012	

Technical	
 Debt	
 August	
 2012	

Copyright	
 ©	
 2012	
 by	
 Philippe	
 Kruchten	
 25	

Exploring	
 other	
 varia?ons	

•  Size	
 of	
 components	

– Add	
 some	
 weigh?ng	
 factor	
 related	
 to	
 the	
 size	
 of	

the	
 component	
 A	
 and	
 B,	
 where	
 A	
 depends	
 on	
 B	

•  Nothing	
 very	
 useful	
 so	
 far;	
 need	
 more	

experimenta?on	
 and	
 valida?on	
 on	
 large	
 real	

systems	

52	
 Copyright	
 ©	
 KESL	
 2012	

Nord	
 et	
 al.	
 2012	

Example	
 of	
 PC:	
 Evolu?on	
 of	
 Ant	

Technical	
 debt	
 reduc@on	

Release	
 number	

53	
 Copyright	
 ©	
 KESL	
 2012	

Technical	
 Debt	
 August	
 2012	

Copyright	
 ©	
 2012	
 by	
 Philippe	
 Kruchten	
 26	

DSM	

•  Value	
 of	
 DSM	
 not	
 fully	
 explored	
 yet	

– Concept	
 of	
 propaga?on	
 cost	

– Concept	
 of	
 density	

– Need	
 to	
 integrate	
 values	
 and	
 costs	

•  Tools	
 to	
 produce	
 or	
 manipulate	
 DSM	

– SonarJ	

– Layx	

•  “What	
 if”	
 scenarios	

54	
 Copyright	
 ©	
 KESL	
 2012	

“Tackling”	
 technical	
 debt	

Technical	
 Debt	
 August	
 2012	

Copyright	
 ©	
 2012	
 by	
 Philippe	
 Kruchten	
 27	

Tackling	
 Technical	
 Debt	

Aytude,	
 approaches	
 found:	

1.  Ignorance	
 is	
 bliss	

2.  The	
 elephant	
 in	
 the	
 room	

3.  Big	
 scary	
 $$$$	
 numbers	

4.  Five	
 star	
 ranking	

5.  Constant	
 reduc?on	

6.  We’re	
 agile,	
 so	
 we	
 are	
 immune!	

57	
 Copyright	
 ©	
 KESL	
 2012	

Ignorance	
 is	
 bliss	

You’re	
 just	
 slower,	
 and	
 slower,	
 but	
 you	
 do	
 not	

know	
 it,	
 or	
 do	
 not	
 know	
 why	

0	

2	

4	

6	

8	

10	

12	

1	
 2	
 3	
 4	
 5	
 6	
 7	

Fu
nc
F
on

al
	
 re

qu
ir
em

en
t	
 d

el
iv
er
ed

	

IteraFons	

Velocity	
 accumulated	
 technical	
 debt	

impacts	
 ability	
 to	
 deliver	

58	
 Copyright	
 ©	
 KESL	
 2012	

Technical	
 Debt	
 August	
 2012	

Copyright	
 ©	
 2012	
 by	
 Philippe	
 Kruchten	
 28	

The	
 elephant	
 in	
 the	
 room	

•  Many	
 in	
 the	
 org.	
 know	

about	
 technical	
 tech.	

•  Indifference:	
 it’s	

someone	
 else’s	
 problem	

•  Organiza?on	
 broken	

down	
 in	
 small	
 silos	

•  No	
 real	
 whole	
 product	

mentality	

•  Short-­‐term	
 focus	

59	
 Copyright	
 ©	
 KESL	
 2012	

Big	
 scary	
 $$$$	
 numbers	

•  Code	
 smells 	
 	
 167	
 person	
 days	

•  Missing	
 test 	
 	
 298	
 person	
 days	

•  Design 	
 	
 	
 	
 670	
 	
 person	
 days	

•  Documenta?on 	
 	
 	
 67	
 person	
 days	
 	

Totals	

	
 Work 	
 	
 	
 	
 	
 1,202	
 person	
 x	
 days	

	
 Cost 	
 	
 	
 	
 	
 $577,000	

60	
 Copyright	
 ©	
 KESL	
 2012	

Technical	
 Debt	
 August	
 2012	

Copyright	
 ©	
 2012	
 by	
 Philippe	
 Kruchten	
 29	

Sta?c	
 analysis	
 +	
 Consul?ng	

•  CuXer	
 Consor?um:	
 Gat,	
 et	
 al.	

– Use	
 of	
 Sonar,	
 etc.	

– Focused	
 on	
 code	
 analysis	

– TD	
 =	
 total	
 value	
 of	
 fixing	
 the	
 code	
 base	

•  CAST	
 so_ware	

•  ThoughtWorks	
 	

Debt	
 analysis	
 engagements	

Debt	
 reduc?on	
 engagements	

61	
 Copyright	
 ©	
 KESL	
 2012	

Issues	

•  Fits	
 the	
 metaphor,	
 indeed.	
 	

•  Looks	
 very	
 objec?ve…	
 but…	

•  Subjec?ve	
 in:	

– What	
 is	
 counted	

– What	
 tool	
 to	
 use	

–  Cost	
 to	
 fix	

Not	
 all	
 fixes	
 have	
 the	
 same	
 resul?ng	
 value.	

Sunk	
 cost	
 are	
 irrelevant,	
 look	
 into	
 the	
 future	
 only.	

What	
 does	
 it	
 mean	
 to	
 be	
 “Debt	
 free”??	

62	
 Copyright	
 ©	
 KESL	
 2012	

Technical	
 Debt	
 August	
 2012	

Copyright	
 ©	
 2012	
 by	
 Philippe	
 Kruchten	
 30	

Five	
 star	
 ranking	

•  Define	
 some	
 maintainability	
 index	

•  Benchmark	
 rela?ve	
 to	
 other	
 so_ware	
 in	
 the	
 same	

category	

•  Re-­‐assess	
 regularly	
 (e.g.,	
 weekly)	

•  Look	
 at	
 trends,	
 correlate	
 changes	
 with	
 recent	

changes	
 in	
 code	
 base	

•  SIG	
 (So_ware	
 Improvement	
 Group),	
 Amsterdam	

•  Powerful	
 tool	
 behind	

63	
 Copyright	
 ©	
 KESL	
 2012	

Constant	
 debt	
 reduc?on	

•  Make	
 technical	
 debt	
 a	
 visible	
 item	
 on	
 the	

backlog	

•  Make	
 it	
 visible	
 outside	
 of	
 the	
 so_ware	
 dev.	

organiza?on	

•  Incorporate	
 debt	
 reduc?on	
 as	
 a	
 regular	

ac?vity	

•  Use	
 buffer	
 in	
 longer	
 term	
 planning	
 for	
 yet	

uniden?fied	
 technical	
 debt	

•  Lie	
 (?)	

64	
 Copyright	
 ©	
 KESL	
 2012	

Technical	
 Debt	
 August	
 2012	

Copyright	
 ©	
 2012	
 by	
 Philippe	
 Kruchten	
 31	

Buffer	
 for	
 debt	
 repayment	

Simple	
 work	

Es?mate	
 	

uncertain?es	

Defect	
 	

correc?on	

Debt	

Repayment	

65	
 Copyright	
 ©	
 KESL	
 2012	

A	
 later	
 release	

66	
 Copyright	
 ©	
 KESL	
 2012	

Technical	
 Debt	
 August	
 2012	

Copyright	
 ©	
 2012	
 by	
 Philippe	
 Kruchten	
 32	

We	
 are	
 agile,	
 so	
 we’re	
 immune!	

In	
 some	
 cases	
 we	
 are	
 agile	
 and	
 therefore	
 we	
 run	
 faster	
 into	
 technical	
 debt	

67	
 Copyright	
 ©	
 KESL	
 2012	

Agile	
 moXos	

•  “Defer	
 decision	
 to	
 the	
 last	
 responsible	
 moment”	

•  “YAGNI”	
 =	
 You	
 Ain’t	
 Gonna	
 Need	
 It	

–  But	
 when	
 you	
 do,	
 it	
 is	
 technical	
 debt	

–  Technical	
 debt	
 o_en	
 is	
 the	
 accumula?on	
 of	
 too	
 many	

YAGNI	
 decisions	

•  “We’ll	
 refactor	
 this	
 later”	

•  “Deliver	
 value,	
 early”	

•  Again	
 the	
 tension	
 between	
 the	
 yellow	
 stuff	
 and	

the	
 green	
 stuff	

•  You’re	
 s@ll	
 agile	
 because	
 you	
 aren’t	
 slowed	
 down	

by	
 TD	
 yet.	
 68	
 Copyright	
 ©	
 KESL	
 2012	

Technical	
 Debt	
 August	
 2012	

Copyright	
 ©	
 2012	
 by	
 Philippe	
 Kruchten	
 33	

TD:	
 a	
 few	
 sugges?ons	

•  Inform	

•  Iden?fy	
 debt;	
 name	
 it	

•  Classify	
 debt:	
 code	
 quality,	
 or	
 structural	

•  Assign	
 value	
 and	
 cost	
 (immediate	
 and	
 future)	

•  Make	
 it	
 visible	
 (put	
 in	
 backlog)	

•  Priori?ze	
 with	
 other	
 backlog	
 elements	

69	
 Copyright	
 ©	
 KESL	
 2012	

Remember	

•  Technical	
 debt	
 is	
 not	
 a	
 defect	

•  Technical	
 debt	
 is	
 not	
 necessarily	
 a	
 bad	
 thing	

Visible	

Feature	

Hidden,	

architectural	

feature	

Visible	

defect	

Technical	

Debt	

Visible	
 Invisible	

Posi?ve	

Value	

Nega?ve	

Value	

70	
 Copyright	
 ©	
 KESL	
 2012	

Technical	
 Debt	
 August	
 2012	

Copyright	
 ©	
 2012	
 by	
 Philippe	
 Kruchten	
 34	

Also…	

•  A	
 suitable	
 system	
 architecture	
 is	
 not	
 likely	
 to	

spontaneously	
 emerge	
 out	
 of	
 weekly	

refactorings	

•  How	
 much	
 architecture	
 do	
 you	
 need	
 or	
 have?	

•  Some	
 novel	
 projects	
 need	
 an	

– Architecture	
 owner	

	
 	
 	
 together	
 with	

– Product	
 owner,	
 and	
 ScrumMaster	

71	
 Copyright	
 ©	
 KESL	
 2012	

Conclusion	

•  Technical	
 debt	
 is	
 more	
 a	
 rhetorical	
 category	

than	
 a	
 technical	
 or	
 ontological	
 category.	
 	

•  The	
 concept	
 	
 resonates	
 well	
 with	
 the	

development	
 community,	
 and	
 some?mes	
 also	

with	
 management.	

•  It	
 bridges	
 the	
 gap	
 between	
 business	
 decision	

makers	
 and	
 technical	
 implementers.	

•  It’s	
 only	
 a	
 metaphor;	
 do	
 not	
 push	
 it	
 too	
 far.	

73	
 Copyright	
 ©	
 KESL	
 2012	

Technical	
 Debt	
 August	
 2012	

Copyright	
 ©	
 2012	
 by	
 Philippe	
 Kruchten	
 35	

Visible	

New	
 features	

Te
ch
no

lo
gi
ca
l	
 g
ap
	

Architectural	
 debt	

Structural	
 debt	
 Code	
 smells	

Defects	
 Low	
 internal	
 quality	

Addi?onal	
 func?onality	
 Low	
 external	
 quality	

Mostly	
 invisible	

Test	
 debt	

Documenta?on	
 debt	

Evolu?on	
 issues:	
 evolvability	
 Quality	
 issues:	
 maintainability	

Visible	

architecture	
 code	

Code	
 complexity	

Coding	
 style	
 viola?ons	

74	
 Copyright	
 ©	
 KESL	
 2012	

Upcoming	
 events	

•  Special	
 issue	
 of	
 IEEE	
 So_ware	
 on	
 Technical	

debt	
 November	
 2012	

•  Possibly	
 a	
 4th	
 workshop	
 on	
 Technical	
 Debt	
 at	

ICSE	
 2013,	
 in	
 San	
 Francisco	

– Or	
 some	
 other	
 venue…	

•  Saturn	
 2013	

•  CompArch	
 2013	

75	
 Copyright	
 ©	
 KESL	
 2012	

Technical	
 Debt	
 August	
 2012	

Copyright	
 ©	
 2012	
 by	
 Philippe	
 Kruchten	
 36	

References	

  Brown,	
 N.,	
 Cai,	
 Y.,	
 Guo,	
 Y.,	
 Kazman,	
 R.,	
 Kim,	
 M.,	
 Kruchten,	
 P.,	
 et	
 al.	
 (2010).	
 Managing	
 Technical	

Debt	
 in	
 So)ware-­‐Intensive	
 Systems.	
 Paper	
 presented	
 at	
 the	
 Future	
 of	
 so_ware	
 engineering	

research	
 (FoSER)	
 workshop,	
 part	
 of	
 Founda?ons	
 of	
 So_ware	
 Engineering	
 (FSE	
 2010)	

conference.	
 	

  Brown,	
 N.,	
 Nord,	
 R.,	
 Ozkaya,	
 I.,	
 Kruchten,	
 P.,	
 &	
 Lim,	
 E.	
 (2011).	
 Hard	
 Choice:	
 A	
 game	
 for	

balancing	
 strategy	
 for	
 agility.	
 Paper	
 presented	
 at	
 the	
 24th	
 IEEE	
 CS	
 Conference	
 on	
 So_ware	

Engineering	
 Educa?on	
 and	
 Training	
 (CSEE&T	
 2011),	
 Honolulu,	
 HI,	
 USA.	

  Cunningham,	
 W.	
 (1992).	
 The	
 WyCash	
 PorOolio	
 Management	
 System.	
 Paper	
 presented	
 at	
 the	

OOPSLA'92	
 conference,	
 ACM.	
 Retrieved	
 from	
 hXp://c2.com/doc/oopsla92.html	

  Cur?s,	
 B.,	
 Sappidi,	
 J.,	
 &	
 Szynkarski,	
 A.	
 (2012).	
 Es?ma?ng	
 the	
 Principal	
 of	
 an	
 Applica?on’s	

Technical	
 Debt.	
 IEEE	
 	
 So_ware,	
 29(6).	

  Denne,	
 M.,	
 &	
 Cleland-­‐Huang,	
 J.	
 (2004).	
 So)ware	
 by	
 Numbers:	
 Low-­‐Risk,	
 High-­‐Return	

Development,	
 Pren?ce	
 Hall.	

  Denne,	
 M.,	
 &	
 Cleland-­‐Huang,	
 J.	
 (2004).	
 The	
 Incremental	
 Funding	
 Method:	
 Data-­‐Driven	

So_ware	
 Development,	
 IEEE	
 So)ware,	
 21(3),	
 39-­‐47.	

  Fowler,	
 M.	
 (2009),	
 Technical	
 debt	
 quadrant,	
 Blog	
 post	
 at:	

hXp://www.mar?nfowler.com/bliki/TechnicalDebtQuadrant.html	
 	

  Gat,	
 I.	
 (ed.).	
 (2010).	
 How	
 to	
 seTle	
 your	
 technical	
 debt-­‐-­‐a	
 manager's	
 guide.	
 Arlington	
 Mass:	

CuXer	
 Consor?um.	

  Kruchten,	
 Ph.	
 (2010)	
 Contextualizing	
 Agile	
 So_ware	
 Development,”	
 Paper	
 presented	
 at	
 the	

EuroSPI	
 2010	
 conference	
 in	
 Grenoble,	
 Sept.1-­‐3,	
 2010	
 	
 	

76	
 Copyright	
 ©	
 KESL	
 2012	

References	

  Kruchten,	
 P.	
 (2011).	
 Contextualizing	
 Agile	
 So_ware	
 Development.	
 Journal	
 of	
 So)ware	
 Maintenance	

and	
 Evolu@on:	
 Research	
 and	
 Prac@ce.	
 doi:	
 10.1002/smr.572	

  Kruchten,	
 P.,	
 Nord,	
 R.,	
 &	
 Ozkaya,	
 I.	
 (2012).	
 Technical	
 debt:	
 from	
 metaphor	
 to	
 theory	
 and	
 prac?ce.	

IEEE	
 	
 So)ware,	
 29(6).	
 	

  Kruchten,	
 P.,	
 Nord,	
 R.,	
 Ozkaya,	
 I.,	
 &	
 Visser,	
 J.	
 (2012).	
 Technical	
 Debt	
 in	
 So_ware	
 Development:	
 from	

Metaphor	
 to	
 Theory-­‐-­‐Report	
 on	
 the	
 Third	
 Interna?onal	
 Workshop	
 on	
 Managing	
 Technical	
 Debt,	

held	
 at	
 ICSE	
 2012	
 ACM	
 SIGSOFT	
 So)ware	
 Engineering	
 Notes,	
 37(5).	
 	

  Li,	
 Z.,	
 Madhavji,	
 N.,	
 Murtaza,	
 S.,	
 GiXens,	
 M.,	
 Miranskyy,	
 A.,	
 Godwin,	
 D.,	
 &	
 Cialini,	
 E.	
 (2011).	

Characteris?cs	
 of	
 mul?ple-­‐component	
 defects	
 and	
 architectural	
 hotspots:	
 a	
 large	
 system	
 case	

study.	
 Empirical	
 So)ware	
 Engineering,	
 16(5),	
 667-­‐702.	
 doi:	
 10.1007/s10664-­‐011-­‐9155-­‐y	

  Lim,	
 E.	
 (2012).	
 Technical	
 Debt:	
 What	
 So)ware	
 Prac@@oners	
 Have	
 to	
 Say.	
 (Master's	
 thesis),	

University	
 of	
 Bri?sh	
 Columbia,	
 Vancouver,	
 Canada.	
 	
 	
 	

  Lim,	
 E.,	
 Taksande,	
 N.,	
 &	
 Seaman,	
 C.	
 B.	
 (2012).	
 A	
 Balancing	
 Act:	
 What	
 So_ware	
 Prac??oners	
 Have	
 to	

Say	
 about	
 Technical	
 Debt.	
 IEEE	
 	
 So)ware,	
 29(6).	

  MacCormack,	
 A.,	
 Rusnak,	
 J.,	
 &	
 Baldwin,	
 C.	
 Y.	
 (2006).	
 Exploring	
 the	
 structure	
 of	
 complex	
 so_ware	

designs:	
 An	
 empirical	
 study	
 of	
 open	
 source	
 and	
 proprietary	
 code.	
 Management	
 Science,	
 52(7),	

1015-­‐1030.	
 	

  Nord,	
 R.,	
 Ozkaya,	
 I.,	
 Kruchten,	
 P.,	
 &	
 Gonzalez,	
 M.	
 (2012).	
 In	
 search	
 of	
 a	
 metric	
 for	
 managing	

architectural	
 technical	
 debt.	
 Paper	
 presented	
 at	
 the	
 Working	
 IEEE/IFIP	
 Conference	
 on	
 So)ware	

Architecture	
 (WICSA	
 2012),	
 Helsinki,	
 Finland.	

  McConnell,	
 S.	
 (2007)	
 Notes	
 on	
 Technical	
 Debt,	
 Blog	
 post	
 at:	
 hXp://blogs.construx.com/blogs/
stevemcc/archive/2007/11/01/technical-­‐debt-­‐2.aspx	

  Special	
 issue	
 of	
 CuTer	
 IT	
 Journal	
 on	
 Technical	
 Debt,	
 edited	
 by	
 I.	
 Gat	
 (October	
 2010)	
 CuXer	
 IT	

Journal,	
 23	
 (10).	

  Sterling,	
 C.	
 (2010)	
 Managing	
 So)ware	
 Debt,	
 Addison-­‐Wesley.	

77	
 Copyright	
 ©	
 KESL	
 2012	

Technical	
 Debt	
 August	
 2012	

Copyright	
 ©	
 2012	
 by	
 Philippe	
 Kruchten	
 37	

Other	
 sources	
 (Talks/slides)	

•  Gat,	
 I.,	
 Heintz,	
 J.	
 (Aug.	
 19,	
 2010)	
 Webinar:	
 Reining	
 in	
 Technical	
 Debt,	
 CuXer	

Consor?um.	

•  McConnell,	
 S.	
 (October	
 2011)	
 Managing	
 technical	
 debt.	
 Webinar	
 	

•  Kniberg,	
 H.	
 (2008)	
 Technical	
 debt-­‐How	
 not	
 to	
 ignore	
 it,	
 at	
 Agile	
 2008	

conference.	

•  Kruchten,	
 P.	
 (2009)	
 What	
 colour	
 is	
 your	
 backlog?	
 Agile	
 Vancouver	

Conference.	
 hXp://philippe.kruchten.com/talks	

•  Sterling,	
 C.	
 (2009)	
 hXp://www.slideshare.net/csterwa/managing-­‐so_ware-­‐
debt-­‐pnsqc-­‐2009	

•  Short,	
 G.	
 (2009)	
 hXp://www.slideshare.net/garyshort/technical-­‐
debt-­‐2985889	

•  West,	
 D.	
 (January	
 2011),	
 Balancing	
 agility	
 and	
 technical	
 debt,	
 Forrester	
 &	

Cast	
 So_ware	

78	
 Copyright	
 ©	
 KESL	
 2012	

Other	
 pointers	

hXp://techdebt.org	

hXp://www.ontechnicaldebt.com/	

@OnTechnicalDebt	

Copyright	
 ©	
 KESL	
 2012	
 79	

Technical	
 Debt	
 August	
 2012	

Copyright	
 ©	
 2012	
 by	
 Philippe	
 Kruchten	
 38	

Acknowledgements	

•  Research	
 on	
 TD	
 partly	
 funded	
 by	
 the	
 	

–  Ipek	
 Ozkaya,	
 Rod	
 Nord,	
 NaneXe	
 Brown	

– They	
 have	
 also	
 contributed	
 to	
 building	
 this	

presenta?on	
 over	
 the	
 last	
 2	
 years.	

•  UBC	
 master	
 students	
 Erin	
 Lim	
 Kam-­‐Yan	
 and	

Marco	
 Gonzalez-­‐Rojas	
 …	

– …	
 with	
 some	
 industry	
 partners	

80	
 Copyright	
 ©	
 KESL	
 2012	

Copyright	
 ©	
 KESL	
 2012	
 81	

Technical	
 Debt	
 August	
 2012	

Copyright	
 ©	
 2012	
 by	
 Philippe	
 Kruchten	
 39	

82	
 Copyright	
 ©	
 KESL	
 2012	

