Agile New England

Agility and Architecture
or: What colours is your backlog?

Philippe Kruchten
July 7, 2011

Philippe Kruchten,sh.p, peng, csop

Professor of Software Engineering
NSERC Chair in Design Engineering

Department of Electrical and Computer Engineering
University of British Columbia
Vancouver, BC Canada
pbk@ece.ubc.ca

Founder and president

Kruchten Engineering Services Ltd
Vancouver, BC Canada
philippe@kruchten.com

/%] Agile Co founder and past-chair

— Vancouver

Copyright © 2011 Philippe Kruchten

Copyright © 2011 Philippe Kruchten

July 2011

Agile New England July 2011

@ Outline

The frog and the octopus

Architecture and agility
Release planning

Technical debt

Architecture, agility,... revisited

e wiNhPe

Copyright © 2011 Philippe Kruchten 5

@ A Conceptual Model of
% g Software Development

4 key concepts, 5 key attributes

" |[ntent _
" Time
"Product = Value
= \Work . ® Cost
= Risk

Copyright © 2011 Philippe Kruchten 8

Copyright © 2011 Philippe Kruchten 2

Agile New England

Intent, Work, Product
Intent realize > Product
roduc
< represent
\ 4 .
broduce A \implement
v drive
» isAllocatedT o
Work People
execute > P

Copyright © 2011 Philippe Kruchten

.}@ Frog: “All projects are the same”

Copyright © 2011

Intent Product
Time Time
Quality Quality
Risk Value Risk Value
Work People
Time Time
Quality Quiality
Risk Cost Risk Cost

Philippe Kruchten

Copyright © 2011 Philippe Kruchten

July 2011

Agile New England

Project environment, customer, end-users,
competition, legacy, business

Wishes, needs, Delivered
constraints Defects, Product
Enhancements
Legal and Regulatory Intent Product
constraints Time Time
_> Quality Quality
Risk Risk
Work People
- - Education
Time Time)
Quality Quiality Experience
Risk Risk <—

*

Copyr\ght]ﬁsem ﬂf@d@g*a&ten

11

Size

Age of
the
system

Domain,
Industry

Rate of

Criticali

% Octopus: “All projects are different!”

Degree of
& Innovation

Business

Context

change model

Stable
architec
ture

Organizational
Maturity

Corporate &
National Culture

Team
distribu

tion

Copyright © 2011 Philippe Kruchten 12

Copyright © 2011 Philippe Kruchten

July 2011

Agile New England July 2011

SW Deuv. Project:
Tension between Intent and Product

Intent

13

Copyright © 2011 Philippe Kruchten 14

Copyright © 2011 Philippe Kruchten 5

Agile New England July 2011

@ Outline

1. The frog and the octopus

2. Architecture and agility

3. Release planning

4. Technical debt

5. Architecture, agility,... revisited

Copyright © 2011 Philippe Kruchten 15

Agile & Architecture? Oil & Water?

* Paradox

* Oxymoron

* Conflict

* Incompatibility

Copyright © 2011 H

Copyright © 2011 Philippe Kruchten 6

Agile New England July 2011

What is Agility?

* Jim Highsmith (2002):

— Agility is the ability to both create and respond to
change in order to profit in a turbulent business
environment.

* Sanjiv Augustine (2004):
— Iterative and incremental
— Small release
— Collocation
— Release plan/ feature backlog
— lteration plan/task backlog

Copyright © 2011 Philippe Kruchten 17

Getting at the Essence of Agility

Software development is a knowledge activity
— Not production, manufacturing, administration...

The “machines” are humans

Dealing with uncertainty, unknowns, fear, distrust

Feedback loops =¥

— reflect on business, requirements, risks, process,
people, technology

e Communication and collaboration

— Building trust =¥ rely on tacit information =% reduce
waste

Copyright © 2011 Philippe Kruchten 18

Copyright © 2011 Philippe Kruchten 7

Agile New England July 2011

Software Architecture: A Definition

“It's the hard stuft.”
“It's the stuff that will be hard to change”

M.Fowler, cited by J. Highsmith

Copyright © 2011 Philippe Kruchten

ISO/IEC 42010 '42'
B

Architecture: the fundamental concepts or
properties of a system in its environment
embodied in its elements, their relationships,
and in the principles of its design and
evolution

Copyright © 2011 Philippe Kruchten 21

Copyright © 2011 Philippe Kruchten 8

Agile New England July 2011

Software Architecture ‘ '

Software architecture encompasses the set of
significant decisions about

* the organization of a software system,

* the selection of the structural elements and
their interfaces by which the system is
composed together with their behavior as
specified in the collaboration among those
elements,

* the composition of these elements into
progressively larger subsystems,

Grady Booch, Philippe Kruchten, Rich Reitman, Kurt Bittner; Rational, circa 1995
(derivedfrom Mafy ShGW) Copyright © 2011 Philippe Kruchten 22

Software Architecture (cont.) ‘ '

* the architectural style that guides this
organization, these elements and their interfaces,
their collaborations, and their composition.

» Software architecture is not only concerned with
structure and behavior, but also with usage,
functionality, performance, resilience, reuse,
comprehensibility, economic and technological
constraints and tradeoffs, and aesthetics.

Copyright © 2011 Philippe Kruchten 23

Copyright © 2011 Philippe Kruchten 9

Agile New England July 2011

Perceived Tensions
Agility- Architecture

* Architecture = Big Up-Front Design
* Architecture = massive documentation
* Architects dictate form their ivory tower

* Low perceived or visible value of architecture
* Loss of rigour, focus on details

* Disenfranchisement

* Quality attribute not reducible to stories

Hazrati, 2008
Rendell, 2009
Blair et al. 2010, ett:.21

Copyright © 2011 Philippe Kruchten

Perceived Tensions
Agility- Architecture

Adaptation versus Anticipation

A

Highsmith 2000

Copyright © 2011 Philippe Kruchten 25

Copyright © 2011 Philippe Kruchten 10

Agile New England July 2011

Issues
Semantics
Scope
Lifecycle
Role
Description
Methods
Value & cost

N O U e WD RE

Semantics

* What do we mean by “architecture”?

 What do we mean by “software architecture”?

Copyright © 2011 Philippe Kruchten 11

Agile New England July 2011

Issues
Semantics
Scope
Lifecycle
Role
Description
Methods
Value & cost

N o Uk wNE

Copyright © 2011 Philippe Kruchten 29

. Scope

* How much architecture “stuff” do you really
need?

* It depends...

* It depends on your context

Copyright © 2011 Philippe Kruchten 30

Copyright © 2011 Philippe Kruchten 12

Agile New England

© NO U A WD RE

Context attributes

Size ye
Criticality
Age of system

\ ‘ Size

Rate of change S

Business model change model
Domain \;\\
Team distribution AT [bomain |
Governance Team

Distribution

Copyright © 2011 Philippe Kruchten 31

All software-intensive systems
have an architecture

How much effort should you put into it varies
greatly

75% of the time, the architecture is implicit
— Choice of technology, platform

— Still need to understand the architecture

Novel systems:

— Much more effort in creating and validating an
architecture

Key drivers are mostly non-functional:
— Runtime: Capacity, performance, availability, security
— Non runtime: evolvability, regulatory, i18n/L10n...

Copyright © 2011 Philippe Kruchten 32

Copyright © 2011 Philippe Kruchten

July 2011

13

Agile New England

. Lifecycle

* When does architectural activities take place?
* The evil of “BUFD” = Big Up-Front Design

* “Defer decisions to the last responsible
moment”

* YAGNI = You Ain’t Gonna Need It
e Refactor!

Copyright © 2011 Philippe Kruchten 34

Architectural Effort During the Lifecycle

N A -Er
Inception Elaboration Construction Transition

time

_Y_I

Majority of architectural design activities

Copyright © 2011 Philippe Kruchten 35

Copyright © 2011 Philippe Kruchten

July 2011

14

Agile New England July 2011

Little dedicated architectural effort

Inception Construction Transition

\7

N\ J
Minimal pure
\ Ideal realm of agile
Architectural ractices g
Activities P
Copyright © 2011 Philippe Kruchten 36

7

lterations and Phases

Inception Elaboration Construction Transition

Preliminary || Architect. Architect.| Devel. Devel. Devel. Transition Transition
Iteration Iteration | Iteration Iteration Iteration |lteration | Iteration Iteration
Iterations with focus on Iterations with main
architecture focus on features

An architectural iteration focuses in putting in place major architectural
elements, resulting in a baseline architectural prototype at the end of
elaboration.

Copyright © 2011 Philippe Kruchten 37

Copyright © 2011 Philippe Kruchten 15

Agile New England

Team Structure over Time (Very Large)

Inception Elaboration # Construction and Transition

[Management team]—»{ Management team]

[Architecture team]

(Architecture Feature team 1

L team

[Prototyping team \.‘ Infrastructure \ | Feature team 3 l

team A

\ Infrastructure
team B

Copyright © 2011 Philippe Kruch rintegration team 38

Feature team 2

Teams using agile development practices

Inception Elaboration ‘L Construction and Transition

[Management team]—»{ Management team]

[Architecture team]

(Architecture Feature team 1

i team
Initial team L Feature team 2
[Prototyping team \‘ Infrastructure \ | Feature team 3 I

team A

\ Infrastructure
team B

Copyright © 2011 Philippe kruchf-integration team 39

Copyright © 2011 Philippe Kruchten

July 2011

16

Agile New England July 2011

Issues
Semantics
Scope
Lifecycle
Role
Description
Methods
Value & cost

N9 vk W e

Copyright © 2011 Philippe Kruchten 40

New Role — Agile Architect ?

* A.Johnston defines the agile architect, but it does
not seems to be any different from a software
architect before agile methods came in.

* Combination of
— Visionary - Shaper
— Designer — making choices
— Communicator — between multiple parties
— Troubleshooter
— Herald — window of the project
— Janitor — cleaning up behind the PM and the developers

Copyright © 2011 Philippe Kruchten 42

Copyright © 2011 Philippe Kruchten 17

Agile New England

Functions of the software architect

Definition of the architecture
* Architecture definition

* Technology selection

* Architectural evaluation

* Management of non
functional requirements

* Architecture collaboration

Delivery of the architecture

* Ownership of the big picture
* leadership

* Coaching and mentoring

* Design, development and
Testing

* Quality assurance

Brown 2010

Copyright © 2011 Philippe Kruchten 43

Two styles of software/system
architects

* Maker and Keeper of Big
decisions

— Bring in technological
changes

— External collaboration
— More requirements-facing
— Gatekeeper

— Fowler: Architectus reloadus

* Mentor, Troubleshooter,
and Prototyper

— Implements and try
architecture

— Intense internal collaboration
— More code-facing

— Fowler: Architectus oryzus

Only big new projects need both or separate people

Copyright © 2011

Philippe Kruchten 44

Copyright © 2011 Philippe Kruchten

July 2011

18

Agile New England July 2011

Team Structure over Time (Very Large)

Inception Elaboration # Construction and Transition

[Management team]—»{ Management team]

[Architecture team]

(Architecture Feature team 1

L team

[Prototyping team \s‘ Infrastructure \ | Feature team 3 l

team A

\ Infrastructure
team B

Copyright © 2011 Philippe Kruch rintegration team 45

Feature team 2

A. Reloadus and A. Oryzus ecological niches

Inception Elaboration ‘L Construction and Transition

[Management team]—»[Management team]

A. Reloadus [Architecture team]

Feature team 1

Initial team

Feature team 2

[Prototyping team

3| Infrastructure | | Feature team 3
/ team A

\ Infrastructure
team B
Copyright © 2011 Philippe kruchf-integration team 46

A. Oryzus

Copyright © 2011 Philippe Kruchten 19

Agile New England

A. Reloadus and A. Oryzus ecological niches

Architecture team

(Architecture ~Feature team 1

L team

Inception Elaboration # Construction and Transition
T— A. Reloadus
[Management team]—> Managemen

Feature team 2

[Prototyping team

A. Oryzus

Copyright © 2011 Philippe I<ruchEr|ntegratlon team I

Feature team 3

s ructur
team B

Role

Architecture owner

Copyright © 2011 Philippe Kruchten

Copyright © 2011 Philippe Kruchten

July 2011

20

Agile New England July 2011

Issues
Semantics
Scope
Lifecycle
Role
Description
Methods
Value & cost

N o vk wDN e

Copyright © 2011 Philippe Kruchten A9

Architectural description

* Metaphor (XP)
Prototype

Software architecture document

Logical View Implem_entation
View

Use of UML?

U M L‘based tOO | S? Process Deployment
View View
Code?

Copyright © 2011 Philippe Kruchten 50

Copyright © 2011 Philippe Kruchten 21

Agile New England

SAC Automated Command and Control System

Process Management System

Commeon Command St Common Command Set Commun Cammand Set

KB
,,,,, Editors Wodel
Selected/Developed Knowledge Bases

i i i i i
Teh e %%

Copyright © 2011 Philippe Kruchten 51

UML 2.0

* A notation

* Better “box and arrows”

* Crisper semantics UNIFIED o

* Almost an ADL ? MODELING 1 /
LANGUAGE

Model-driven design,

Model-driven architecture.

Copyright © 2011 Philippe Kruchten 52

Copyright © 2011 Philippe Kruchten

July 2011

22

Agile New England

© NO U A WD RE

Again, it depends on the context

Size
Criticality
Age of system

Criticality

Businb

model

Rate of change

Business model

Stable\

rchitectur.

Stable architecture

Team distribution Governance

Governance

Copyright © 2011 Philippe Kruchten 53

Adaptation versus Anticipation

A

Highsmith 2000

Copyright © 2011 Philippe Kruchten 54

Copyright © 2011 Philippe Kruchten

July 2011

23

Agile New England

Issues
Semantics
Scope
Lifecycle
Role
Description
Methods
Value & cost

N o Uk W

Copyright © 2011 Philippe Kruchten

Architectural design methods

e Many agile developers do not know (much)
about architectural design

» Agile methods have no explicit guidance for
architecture

— Metaphor in XP
— Technical activities in scrum

* Relate this to Semantics and Scope issue

* May have to get above the code level

Copyright © 2011 Philippe Kruchten

Copyright © 2011 Philippe Kruchten

July 2011

24

Agile New England

ADD, ATAM, QAW (SEI)
RUP (IBM)

SAV,... (Siemens)
BAPO/CAFR (Philips)

* Etc. ...

(SARA) handbook

Architectural Methods

Software Architecture Review and Assessment

Copyright © 2011 Philippe Kruchten 57

Architectural
Assets

\@/
Ideas

@ w2 Backlog

7

/

[

Context, Constraints

Architectural
Analysis

lll---ll*'l

[y

Architecturally
Significant
Requirements

Copyright © 2011 Philippe
Kruchten

ok

Architectural Design

Architecture

L4
Architectural ‘.’
H *
Synthesis o ¢ -
&
o
[]
]
]
L4
L 4

Architectural
Evaluation“"

<l-l““

Evaluation results

Source: Hofmeister, Kruchten, et al., 2005, 2007 58

Copyright © 2011 Philippe Kruchten

July 2011

25

Agile New England July 2011

Ilterative Architecture Refinement

* There are no fixed prescriptions for
systematically deriving architecture from
requirements; there are only guidelines.

* Architecture designs can be reviewed.

* Architectural prototypes can be thoroughly
tested.

* lterative refinement is the only feasible
approach to developing architectures for
complex systems.

Copyright © 2011 Philippe Kruchten 59

Issues
Semantics
Scope
Lifecycle
Role
Description
Methods
Value & cost

N o Uk WD E

Copyright © 2011 Philippe Kruchten 60

Copyright © 2011 Philippe Kruchten 26

Agile New England July 2011

Value and Cost

* Value: to the business (the users, the
customers, the public, etc.)

* Cost: to design, develop, manufacture, deploy,
maintain

* Simple system, stable architecture, many small
features:

— Statistically value aligns to cost
* Large, complex, novel systems ?

Copyright © 2011 Philippe Kruchten 61

B Outline

The frog and the octopus
Architecture and agility
Release planning
Technical debt

Architecture, agility,... revisited

Al

Copyright © 2011 Philippe Kruchten 63

Copyright © 2011 Philippe Kruchten 27

Agile New England

>

Feature Requests

Steve Adolph 2008

Priority

Sprint Planning

'>

y:

-
BN\,

Copyright © 2011 Philippe Kruchten 66

AN

(s
i

Time-box
A
+
3 Work (=Cost)
(Vp)
v
< - S
Copyright (;I;Jllm;:peekruchten 69

Copyright © 2011 Philippe Kruchten

July 2011

29

Agile New England

Time-boxes: Releases

Release 1 R2 R3

R4

Time

Copyright © 2011 Philippe Kruchten

71

Time-boxes: Iterations (sprints)

Release N

ITERATION 1

Time

Copyright © 2011 Philippe Kruchten

72

Copyright © 2011 Philippe Kruchten

July 2011

30

Agile New England

[
@ Features

Rn

Copyright © 2011 Philippe Kruchten 75

Work and Cost

* How much work is associated to a feature?

* Work is strongly related to cost in software
development (a human-intensive activity)

* Overall budget is roughly the size of the time-
box(es)

* Time-box = budget
* Features must fit in budget
* Q: How do we select what goes in the box?

Copyright © 2011 Philippe Kruchten 76

Copyright © 2011 Philippe Kruchten

July 2011

31

Agile New England

Maximizing value

N
N

Highest value first

Ignore time
1 Copyright © 2011 Philippe Kruchten 79
Value = Cost?
4 B3 $8
sl >> P s1s
5 B
2 ES
5 K
3 ES
Only for simplest cases .

Copyright © 2011 Philippe Kruchten

July 2011

32

Agile New England July 2011

Value /= Cost

Value

$5

Copyright © 2011 Philippe KrucfgeQSt 81
>

Value and Cost

* Value: to the business (the users, the
customers, the public, etc.)

* Cost: to design, develop, manufacture, deploy,
maintain

* Simple system, stable architecture, many small
features:

— Statistically value aligns to cost
* Large, complex, novel systems ?

Copyright © 2011 Philippe Kruchten 82

Copyright © 2011 Philippe Kruchten 33

Agile New England

é Value A
Intent Product
Time Time
Quality Quiality
Risk Risk

/ Work People \

Time Time
Quality Quality
Risk Risk

\ Cost Y,

Efficiency vs. Effectiveness

Efficiency Effectiveness

* relationship between the * relationship between the
output in terms of goods, intended impact and the
services or other results and actual impact of an activity
the resources used to
produce them

Cost Value

Copyright © 2011 Philippe Kruchten 84

Copyright © 2011 Philippe Kruchten

July 2011

34

Agile New England

o 124
- Spent-Cost”™ System
a5 Time Now ﬁf:::::;ﬂn
Date
EAC
20
15 Fy f‘
H Cost Fy
% Variance Schedule
a Variance
" - 7 BCWS
. -~ BCWP
s
| 1
° 3 Work performed
1 2 3 4 5 6 7 8 9 10 11 1
cosT of Wor
hd:;ted cOsT of Work sched“‘e(:i
u
performe
udgeted COST of Work
Copyright © 2011 PHjlippe Krtichten

Invisible Features

P 515 4m)

Copyright © 2011 Philippe Kruchten

88

Copyright © 2011 Philippe Kruchten

July 2011

35

Agile New England July 2011

Invisible Features

* Architecture

* Infrastructure

* Common elements
* Framework

* Libraries

* Reuse

* DSL

* Product line

Copyright © 2011 Philippe Kruchten 89

Features

Copyright © 2011 Philippe Kruchten 90

Copyright © 2011 Philippe Kruchten 36

Agile New England July 2011

Dependencies

Copyright © 2011 Philippe Kruchten 91

Release Planning

Time-box = budget

Fill the time-box with a combination of visible
and invisible features

... while maximizing value

Easy, no?

Copyright © 2011 Philippe Kruchten 92

Copyright © 2011 Philippe Kruchten 37

Agile New England July 2011

Tension

* Product manager: maximize value (green stuff)

* Project manager: maximize budget utilization

—i.e., minimize cost

* Techie: maximize the fun stuff (yellow) ?

Copyright © 2011 Philippe Kruchten 93

Value for the yellow stuff:

Heuristics
* Value of invisible feature = Max (value of all
dependents)
* Value of invisible feature = Max + f(number of
dependents)

Value of invisible feature = total value
achievable if implementing it — total value
achievable without implementing it

(Not there yet, more research need to happen)

Copyright © 2011 Philippe Kruchten

Copyright © 2011 Philippe Kruchten 38

Agile New England

More on value & cost

CBAM = Cost Benefit Analysis Method
— Chap 12 in Bass, Clements, Kazman 2003

IMF: Incremental Funding Method
— Denne & Cleland-Huang, 2004
Software by numbers

Analytic Hierarchy Process (AHP) Saaty, 1990

Evolve* - Hybrid
— Gunther Ruhe & D. Greer 2003, etc...

Copyright © 2011 Philippe Kruchten 100

IFM: Incremental Funding Method

e MMF = Minimum Marketable Features

AE = Architectural elements

Cost

MMF depends on AE

Time and NPV = Net Present Value
Strands = Sequences of dependent MMFs

Heuristic

Denne & Huang, www.softwarebynumbers.org

Copyright © 2011 Philippe Kruchten 101

Copyright © 2011 Philippe Kruchten

July 2011

39

Agile New England July 2011

L) Visible & Invisible
Features

L)

Copyright © 2011 Philippe Kruchten 103

el

- Estimation

* Cost estimation
* Work

* Estimate
— ldeal case?
* Things go wrong
— Worse case?

* > all worse cases = impossible implementation

Copyright © 2011 Philippe Kruchten 104

Copyright © 2011 Philippe Kruchten 40

Agile New England

- Buffers

* E. Goldratt: Theory of constraints
* D. Anderson: Agile Project Management

» Buffer: unallocated effort (work)

* Shared by all staff members and all explicit
work

Copyright © 2011 Philippe Kruchten

105

- Time-box with Buffer

Copyright © 2011 Philippe Kruchten

107

Copyright © 2011 Philippe Kruchten

July 2011

41

Agile New England July 2011

L]
-- Defects

* Defect = Feature with negative value
* Fixing a defect has a positive cost (work)

* Time/place of discovery
— Inside development (in-house, in process)

— Outside development (out-house?) in a released
product (escaped defects)

Copyright © 2011 Philippe Kruchten 109

Escaped Defect has Value

.-

Perfect product Imperfect product Defect

Copyright © 2011 Philippe Kruchten 110

Copyright © 2011 Philippe Kruchten 42

Agile New England July 2011

Fixing a Defect has a Cost

Defects have both value and cost

Value of fixing a defect = -Value of the defect

Cost of fixing a defect (estimated, actual)

Defects have dependencies
— Defect fix depend on invisible feature
— Visible feature depending on a fix

Copyright © 2011 Philippe Kruchten 111

] Visible & Invisible
Features + Defects fixing

.
= -

Copyright © 2011 Philippe Kruchten 113

Copyright © 2011 Philippe Kruchten 43

Agile New England

1. The frog and the octopus

QOutline

2. Architecture and agility

3. Release planning

4. Technical debt

5. Architecture, agility,... revisited

Copyright © 2011 Philippe Kruchten 116

N .
.- Technical Debt

Concept introduced by Ward Cunningham
Often mentioned, rarely studied

All experienced SW developers “feel” it.
Drags long-lived projects and products down

Copyright © 2011 Philippe Kruchtgrlfmningham’ OOPSLA 1992 117

Copyright © 2011 Philippe Kruchten

July 2011

44

Agile New England July 2011

Origin of the metaphor

* Ward Cunningham, at OOPSLA 1992

“Shipping first time code is like going

into debt. A little debt speeds development
so long as it is paid back promptly with a
rewrite...

The danger occurs when the debt is not
repaid. Every minute spent on not-quite-right code
counts as interest on that debt. Entire engineering
organizations can be brought to a stand-still under the
debt load of an unconsolidated implementation,
object-oriented or otherwise.”

Cunningham, OOPSLA 1992

Copyright © 2011 Philippe Kruchten 118

Technical Debt (S. McConnell)

* Implemented features (visible and
invisible) = assets = non-debt

* Type 1: unintentional, non-strategic;
poor design decisions, poor coding

* Type 2: intentional and strategic:
optimize for the present, not for the
future.

— 2.A short-term: paid off quickly (refactorings, etc.)
* Large chunks: easy to track
* Many small bits: cannot track

— 2.B long-term

McConnell 2007

Copyright © 2011 Philippe Kruchten 119

Copyright © 2011 Philippe Kruchten 45

Agile New England July 2011

Technical Debt (M. Fowler)

Reckless Prudent
“We don’t have time “We must ship now
for design” and deal with
consequences”
Deliberate
Inadvertent

“Now we know how we

“What's Layering?” should have done it”

Fowler 2009, 2010

Copyright © 2011 Philippe Kruchten 120

Exa m p I e underestimated
re-architecting costs
First more capabilities hen, more infrastructure
O — e

debt to gain insight into
life-cycle efficiency

neglected cost of delay
to market

First more infrastructure Then, more capabilities
Ozkaya, SEI,2010 Copyright © 2011 Philippe Kruchten 121

Copyright © 2011 Philippe Kruchten 46

Agile New England July 2011

Technical Debt (Chris Sterling)

* Technical Debt: issues found in the code
that will affect future development but not
those dealing with feature completeness.

Or

* Technical Debt is the decay of
component and intercomponent
behaviour when the application
functionality meets a minimum 4
standard of satisfaction for the customer.

Copyright © 2011 Philippe Kruchten 122

Time is Money (l. Gat)

* Time is money:
Think of the amount of money the
borrowed time represents — the

grand total required to eliminate
all issues found in the code

Gat 2010

Copyright © 2011 Philippe Kruchten 123

Copyright © 2011 Philippe Kruchten 47

Agile New England July 2011

TD is the sum of...
* Code smells 167 person days
* Missing test 298 person days
* Design 670 person days
* Documentation 67 person days
Totals
Work 1,202 person x days
Cost S$577,000

(more)
Relentless
Pressure

Reduced
Development
Team
Velocity

Take
Technical
Debt

Fail to Pay
Technical back
Debt Accrues Technical
debt

Israel Gat, 2010

http://theagileexecutive.com/2010/09/20/how-to-break-the-vicious-cycle-of-technical-debt/
Copyright © 2011 Philippe Kruchten 125

Copyright © 2011 Philippe Kruchten 48

Agile New England

|
Customer
Responsiveness
A
- |
(%)
]
e
)
c |
[}
-
o
k]
2 Product Technical Debt
8 REeIease > _
E——'”’ OptlTaI CoC |

»

1234561738
Years

Copyright © 2011 Philippe Kruchten

Tech Debt (Jim Highsmith)

Once on far right of curve, all
choices are hard

If nothing is done, it just gets
worse

In applications with high
technical debt, estimating is
nearly impossible

Only 3 strategies

1. Do nothing, it gets worse

2. Replace, high cost/risk

3. Incremental refactoring,
commitment to invest

Source: Highsmith, 2009,

$20

Technical Debt (1)

$15 s16 [(EEN s18
=)
$5 $3

$19 $18

Copyright © 2011 Philippe Kruchten 127

Copyright © 2011 Philippe Kruchten

July 2011

49

Agile New England

Bl -

El ™

12 B

_a Jss

8 KB

$25

Technical Debt (2)

12 B33

_ b |s3

S S8

827

Copyright © 2011 Philippe Kruchten

12

B 510

$28

128

Technical Debt (3)

Copyright © 2011 Philippe Kruchten

129

Copyright © 2011 Philippe Kruchten

July 2011

50

Agile New England July 2011

Technical Debt

» Defect = Visible feature with negative value

e Technical debt = Invisible “feature” with
negative value

e Cost.... of fixing
* Value of repaying technical debt ???

Copyright © 2011 Philippe Kruchten 130

“Interests” ?

* In presence of technical debt:
Cost of adding new features is higher

* When repaying (fixing), additional cost for
retrofitting already implemented features

* Technical debt not repaid => lead to increased
cost, forever

* Cost of fixing increases over time

M. Fowler

Copyright © 2011 Philippe Kruchten

Copyright © 2011 Philippe Kruchten 51

Agile New England

- TD and Real Options

Market loves it

+$4M
-2M 9 Q
Pyt Sy w5,
035]
X} Market hates it
+S$1M

NPV (P;) = -2M + 0.5x4M + 0.5x1M = 0.5M

Source: K. Sullivan, 2010
at TD Workshop SEI 6/2-3

Copyright © 2011 Philippe Kruchten 132

TD and Real Options (2)

-1M
/ Market loves it S, +4M
1M 0°

Pyi S, m—— S, ¢

o35)
X} Market hates it

+S$1M

NPV (P,) = -1M + 0.5x3M + 0.5x1M = 1M

Taking Technical Debt has increased system value. Source: K. Sullivan, 2010

Copyright © 2011 Philippe Kruchten 133

Copyright © 2011 Philippe Kruchten

July 2011

52

Agile New England July 2011
TD and Real Options (3)
Higher chance
of success
-1.5M
Market loves it=mm=3p S, +4M
-IM 08!
Py Sy m— S, ©
o Repay debt +
0'33 Market hates it 50% interest
+S$1M
NPV (P,) =-1M +0.67 x 2.5M + 0.33 X IM = 1M
More realistically:
Debt + interest
ngh chances Of success Copyright © 2011 Philippe Kruchten 135
TD and Real Options (4)
Add feature
S gy Sy — S,
‘@é N
Favourable ,40,
/ \ﬁ’f
SD) Sd -\
Osp Unfavourable
Not debt really, but options with different values...
Do we want to invest in architecture, in test, etc...
Source: K. Sullivan, 2010
Copyright © 2011 Philippe Kruchten 136
Copyright © 2011 Philippe Kruchten 53

Agile New England July 2011

* Technical debt is more a rhetorical category than
a technical or ontological category.

— The concept resonates well with the development
community and the business community

— Both sides “get” the metaphor.

* Technical debt is a concept that bridges the gap
between:

— Business decisions makers
— Software designers/developers

Copyright © 2011 Philippe Kruchten 137

- Buffer for debt repayment

Debt

Defect Repayment

Estimate correction

Simple work uncertainties

Copyright © 2011 Philippe Kruchten 138

Copyright © 2011 Philippe Kruchten 54

Agile New England July 2011

Colours in your Backlog

Visible Invisible

Positive Visible Hidd.en,
Feature architectural
Value feature
Negative Technical
Value Debt

Copyright © 2011 Philippe Kruchten 139

* YAGNI = You Ain’t Gonna Need It
— But when you do, it is technical debt

— Technical debt often is the accumulation of too
many YAGNI decisions

* Again the tension between the yellow stuff
and the green stuff.

Copyright © 2011 Philippe Kruchten 140

Copyright © 2011 Philippe Kruchten 55

Agile New England July 2011

L Visible & Invisible
Features + Defects fixing
+ Technical Debt payment

\

_
L)

Copyright © 2011 Philippe Kruchten 148

Time and depreciation

:I
7
S
O

Time
Maximum
cash
injection ~ -
needed
Invest- Repayment Profit
ment period period
period
Self- Break
funding even
point time
Copyright © 2ULT Philippe Rruchten 149

Denne & Huang 2004

Copyright © 2011 Philippe Kruchten 56

Agile New England July 2011

Net Present Value

Net Present Value (NPV)

T
Cash Flow t
_ E __Initial Cash
= ¢ Investment
t=1 (1+i)

t = Cash Flow Period
i = Interest Rate Assumption

Copyright © 2011 Philippe Kruchten 150

Value decreases

& 6 6B &3

Tim

Copyright © 2011 Plgippe Kruchten 152

Copyright © 2011 Philippe Kruchten 57

Agile New England July 2011

Technical debt: increase (?)

8 0 =

.
Time
ilippe Kruchten

Copyright © 2011 Ph 153
#94 Tell AnonymousUsers the benefits of registering Low Cost High Value
#97 Legal notices Low Cost Medium Value
#100 Per-list unsubscribe for mailing-list-only users Medium Cost Medium Value
#50 Group member list: "edit details" for someone's membership Low Cost Medium Yalue
#96 Chapters (possibly netwarks?) map Medium Cost Low Yalue
#102 Topics should show icon of some sort to indicate attachments Low Cost Low Value
! BASED on by Nicolas Kruchten & co
1.0RC1 -Relase Candidate 1 14 n-t1e S Garas Y
. Ticket Summary Cost Yalue Owner
#49 switch to email-based usernames High Cost High Yalue joshuagorner
#54 Wha's Online listing Medium Cost High Value francis
#55 National Office content Medium Cost High Value
#58 chapter vs network Medium Cost High Value Jjoshuagorner
#61 Intuitive combinations of group visibility / privacy in UI Medium Cost High Value
#93 Individual anonymous users should be able to sign up to mailing lists Medium Cost High Value

#21 Verify email accounts automatically Medium Cost Medium Value

#22 Multiple levels of membership in a group High Cost Medium Yalue

#23 Groups should have "former members" to handle involvement history Medium Cost Medium Value

#56 Suggested communities Medium Cost Medium Value

#60 Notifications for group invitations / requests Low Cost Medium Value

None omanes

Ticket Summary Cost Yalue Owner
#64 fire and forget URL for signing up email addresses to the main list Medium Cost High Yalue

#67 topic-creation preview Medium Cost High Value

#99 feedback system Low Cost High Value

Copyright © 2011 Philippe Kruchten 58

Agile New England

[@ Nicola Wealth Management Issue Tracking - Mozilla Firefox

Ele Edt View History Defcious Bookmarks Took Help

on- c

w i B B [0 Teunoo.srednineanbon

(No issues)

Selected Requests

5] Most visited @ Getting Started *9 Text and Wieb - Googl... 1L 11 signin B4 . M visual Studio Add-Ins ... *3 Google Apps
il G Recently Bookmarked - | | THE PROCESS : DESI... (=) Ruwi: Continuous Ins... | | SUA Community: Micr... |] 1) bont 0 Jete ~JustD... |] Impl
Coogle [cssstylefontcoor =] M search - B @ & - [41- & - fl 17 Bookmarks = -\ Autolik -] autort - & (6 ess [E stve [E] fonkcolor
[Pl he Background and Color Css Properties. | |] Nicola Wealth Management Issu... £ J W/ Web colors - Wikipedia, 30 & \ @ How to Change the Font Color with C5... .+
Kanban
Each list is @ Pane of issues. The issues can be dragged and dropped onto other panes based on Roles and Permissions settings.
Incoming Quick Tasks User Active Testing

Chris Nicola
(Noissues)

Adam Dymitruk
(No issues)

Admin Istrator

(No issues)

Jennifer Keates

| #48 -Technical Debt - Unsorted - Test Technical _
Debt for Kanban Board

| #48 - Architecture - Unsorted - Test Architecture (N0 issues)
for Kanban Board

Lee Tippetts-
Aylmer

Based on Redmine, by Chris Nicolzhmyright © 2011

Paul Newton

(25 Faahire = Datahase = Client st Tapl] (N0 1ssu=s)
Richard Haisinger

(No issues) (No issues)
Fifligi¥e Krucht@Bissues) (o issues)

Risks & Uncertainties

Copyright © 2011 Philippe Kruchten 158

Rule of thumb:
* Green stuff: move up

— defer

* Yellow stuff: move down
— Experiment now

Karl Wiegers, 1999
RUP, 1998

Copyright © 2011 Philippe Kruchten

July 2011

59

Agile New England July 2011

QOutline

1. The frog and the octopus

2. Architecture and agility

3. Release planning

4. Technical debt

5. Architecture, agility,... revisited

Copyright © 2011 Philippe Kruchten 159

}@ What would Frog say?

Intent Product

Time Time

Quality Quality

Risk Value Risk Value
Work People

Time Time

Quality Quiality

Risk Cost Risk Cost

Copyright © 2011 Philippe Kruchten 60

Agile New England July 2011

% % ; What would Octopus say?

Size
Domain, Age of Degree of

Industry the - il Innovation
system

Rate of
change

Business
model

Context

Stable

architec o
Corporate & ey ture Organizational

National Culture sl Maturity

tion

Copyright © 2011 Philippe Kruchten 161

Architecture: Value and Cost

* Architecture has no (or little) externally visible
“customer value”

* [teration planning (backlog) is driven solely by
“customer value”

* YAGNI, BUFD, Metaphor...
* “Last responsible moment!” & Refactor!

* Ergo: architectural activities are not given proper
attention

* Ergo: large technical debts

Copyright © 2011 Philippe Kruchten 162

Copyright © 2011 Philippe Kruchten 61

Agile New England

Role of Architecture

Novel system
Gradual emergence of architecture

Validation of architecture with actual
functionality

Early enough to support development

Zipper model...
* Not just BUFD
* No YAGNI effect

Copyright © 2011 Philippe Kruchten

163

Planning

* From requirements derive:
— Architectural requirements
— Functional requirements
 Establish
— Dependencies
— Cost
* Plan interleaving:
— Functional increments
— Architectural increments

Copyright © 2011 Philippe Kruchten

164

Copyright © 2011 Philippe Kruchten

July 2011

62

Agile New England

Zipper: Weaving the functional and
architectural work items

Copyright © 2011 Philippe Kruchten 165

functionality

Not just BUFD

Gradual emergence of architecture
Validation of architecture with actual

Early enough to support development

No YAGNI effect

Benefits

Copyright © 2011 Philippe Kruchten 166

Copyright © 2011 Philippe Kruchten

July 2011

63

Agile New England

Suggestions for project management

* Separate the processes for estimation of cost
and value

* Avoid monetary value (points & utils)

* |Identify invisible features and make them
more visible to more stakeholders

* Allocate value to invisible feature

* Use nominal and worse case estimates for cost
(effort); create shared buffers

Suggestions (cont.)

* Manage all elements together

* Make technical debt visible
— Large chunks (McConnell type 2)

* Assign some value to technical debt type 2.B
and include in backlog

* Exploit different type of buffers

Copyright © 2011 Philippe Kruchten

July 2011

64

Agile New England July 2011

Manage all colours in your backlog!

Copyright © 2011 Philippe Kruchten 169

3 Kinds of Buffers

Debt

To care of: Repayment
Defect

. correction
Estimate

uncertainties

Straighforward work

Copyright © 2011 Philippe Kruchten 171

Copyright © 2011 Philippe Kruchten 65

Agile New England July 2011

Toward the 15t release

Copyright © 2011 Philippe Kruchten

A later release

Copyright © 2011 Philippe Kruchten

Copyright © 2011 Philippe Kruchten 66

Agile New England July 2011

Adaptation versus Anticipation

e

Highsmith 2000

Copyright © 2011 Philippe Kruchten 174

Four take-aways

Put it in context

Distinguish value and cost

Define an “Architecture owner”

* Expose & manage technical debt

A
1 5
&l
-

Copyright © 2011 Philippe Kruchten 175

Copyright © 2011 Philippe Kruchten 67

Agile New England July 2011

Game to Introduce Tech Debt

www.sei.cmu.edu/architecture/tools/hardchoices/

Mission to mars

A Release Planning game
philippe.kruchten.com/mtm

Story 12 2sp |
{

1l
| Story 24 55SP

Water production plant

..l ~

\
| An.

with J. King
SoftEd, Aus.

Copyright © 2011 Philippe Kruchten 178

Copyright © 2011 Philippe Kruchten 68

Agile New England July 2011

Starting with software architecture

= Gorton, |. (2006). Essential software architecture. Berlin: Springer.

= Rozanski, N., & Woods, E. (2005). Software Systems Architecture:
Working With Stakeholders Using Viewpoints and Perspectives.
Boston: Addison-Wesley.

= Bass, L., Clements, P., & Kazman, R. (2003). Software Architecture in
Practice (2nd ed.). Reading, MA: Addison-Wesley.

= Fairbanks, G. (2010). Just enough software architecture. Boulder,
Co: Marshall and Brainerd.

= Kruchten, P., Obbink, H., & Stafford, J. (2006). The past, present and
future of software architecture. IEEE Software, 23(2), 22-30.

= Brown, S. (Feb. 9, 2010) Are you an architect?, InfoQ http://
www.infog.com/articles/brown-are-you-a-software-architect.

= Fowler, M. (2003) Who needs an architect?, IEEE Software, 20(4),
2-4,

Copyright © 2011 Philippe Kruchten 179

Agility & architecture

* Abrahamsson, P., Ali Babar, M., & Kruchten, P. (2010). Agility and Architecture: Can they Coexist?
IEEE Software, 27(2), 16-22.

* Ambler, S. W. (2006). Scaling Agile Development Via Architecture [Electronic Version]. Agile
Journal, from http://www.agilejournal.com/content/view/146/

e Blair, S., Watt, R., & Cull, T. (2010). Responsibility-Driven Architecture. IEEE Software, 27(2), 26-32.

* Brown, S. (2010), "Are you an architect?," InfoQ, http://www.infoq.com/articles/brown-are-you-a-
software-architect

e Brown, N., Nord, R., Ozkaya, |. 2010. Enabling Agility through Architecture, Crosstalk, Nov/Dec
2010.

e Clements, P, Ivers, J., Little, R., Nord, R., & Stafford, J. (2003). Documenting Software Architectures
in an Agile World (Report CMU/SEI-2003-TN-023). Pittsburgh: Software Engineering Institute.

e Hazrati, V. (2008, Jan.6) "The Shiny New Agile Architect," in Agile Journal.
http://www.agilejournal.com/articles/columns/column-articles/739-the-shiny-new-agile-architect

* Johnston, A., The Agile Architect, http://www.agilearchitect.org/

* Madison, J. (2010). Agile-Architecture Interactions. IEEE Software, 27(2), 41-47.

* Nord, R. L., & Tomayko, J. E. (2006). Software Architecture-Centric Methods and Agile
Development. IEEE Software, 23(2), 47-53.

* Parsons, R. (2008). Architecture and Agile Methodologies—How to Get Along. Tutorial At WICSA
2008, Vancouver, BC.

e Rendell, A. (2009) "Descending from the Architect's Ivory Tower," in Agile 2009 Conference, A.
Sidky, et al., eds. IEEE Computer Society, pp. 180-185.

* Woods, E. (2010). Agile Principles and Software Architecture, presentation at OOP 2010 Conf.,
Munich, Jan 26.

Copyright © 2011 Philippe Kruchten 180

Copyright © 2011 Philippe Kruchten 69

Agile New England July 2011

References (1)

* Agile Alliance (2001), "Manifesto for Agile Software Development," Retrieved May 1st, 2007 from
http://agilemanifesto.org/

* Abrahamsson, P., Ali Babar, M., & Kruchten, P. (2010). Agility and Architecture: Can they Coexist?
IEEE Software, 27(2), 16-22.

* Ambler, S. W. (2006). Scaling Agile Development Via Architecture [Electronic Version]. Agile
Journal, from http://www.agilejournal.com/content/view/146/

* Augustine, S. (2004), Agile Project Management, Addison Wesley Longman

e Bass, L., Clements, P., & Kazman, R. (2003). Software Architecture in Practice (2nd ed.). Reading,
MA: Addison-Wesley.

e Beck, K., & Fowler, M. (2001). Planning Extreme Programming. Boston: Addison-Wesley.
e Blair, S., Watt, R., & Cull, T. (2010). Responsibility-Driven Architecture. IEEE Software, 27(2), 26-32.

* Brown, S. (2010), "Are you an architect?," InfoQ, http://www.infoq.com/articles/brown-are-you-a-
software-architect

* Brooks, F. (1975) The mythical man-month, Reading, MA: Addison-Wesley.

e Brown, N., Cai, Y., Guo, Y., Kazman, R., Kim, M., Kruchten, P., et al. (2010). Managing Technical Debt
in Software-Intensive Systems. Paper presented at the Future of software engineering research
(FOSER) workshop, part of Foundations of Software Engineering (FSE 2010) conference

* Brown, N., Nord, R., Ozkaya, I. 2010. Enabling Agility through Architecture, Crosstalk, Nov/Dec
2010.

* Cohn, M. (2006) Agile Estimating and Planning. Upper Saddle River, N.J.: Prentice-Hall.

Copyright © 2011 Philippe Kruchten 181

References (2)

* Clements et al. (2005). Documenting Software Architecture, Addison-Wesley.

* Clements, P, Ivers, J., Little, R., Nord, R., & Stafford, J. (2003). Documenting Software Architectures
in an Agile World (Report CMU/SEI-2003-TN-023). Pittsburgh: Software Engineering Institute.

* Cunningham, W. 1992. The WyCash Portfolio Management System. OOPSLA '92 Experience Report.
http://c2.com/doc/oopsla92.html.

* Denne, M., & Cleland-Huang, J. (2004). Software by Numbers: Low-Risk, High-Return Development,
Prentice Hall.

* Faber, R. (2010). Architects as Service Providers. IEEE Software, 27(2), 33-40.
* Fowler, M. (2003). Who needs an architect? IEEE Software, 20(4), 2-4.
* Fowler, M. (2004) Is design dead? At http://martinfowler.com/articles/designDead.html

* Fowler, M.(2009) Technical debt quadrant, Blog post at:
http://martinfowler.com/bliki/TechnicalDebtQuadrant.html.

* Gat, I., Heintz, J. (Aug. 19, 2010) Webinar: Reining in Technical Debt, Cutter Consortium.

* Hazrati, V. (2008, Jan.6) "The Shiny New Agile Architect," in Agile Journal.
http://www.agilejournal.com/articles/columns/column-articles/739-the-shiny-new-agile-architect

* Johnston, A., The Agile Architect, http://www.agilearchitect.org/

e Karlsson, J. & Ryan, K. (1997). A Cost-Value Approach for Prioritizing Requirements, IEEE Software,
14 (5) 67-74.

* Kniberg, H. (2008) Technical debt-How not to ignore it, at Agile 2008 conference

Copyright © 2011 Philippe Kruchten 182

Copyright © 2011 Philippe Kruchten 70

Agile New England July 2011

References (3)

* Kruchten, P. (1995). The 4+1 View Model of Architecture. IEEE Software, 12(6), 45-50.

e Kruchten, P. (1999). The Software Architect, and the Software Architecture Team. In P.
Donohue (Ed.), Software Architecture (pp. 565-583). Boston: Kluwer Academic
Publishers.

e Kruchten, P. (March 2001). The Tao of the Software Architect. The Rational Edge. At
http://www-106.ibm.com/developerworks/rational/library/4032.html

* Kruchten, P. (2003). The Rational Unified Process: An Introduction (3rd ed.). Boston:
Addison-Wesley.

* Kruchten, P. (2004). Scaling down projects to meet the Agile sweet spot. The Rational
Edge. http://www-106.ibm.com/developerworks/ rational/library/content/
RationalEdge/aug04/5558.html

e Kruchten, P. (2008). What do software architects really do? Journal of Systems &
Software, 81(12), 2413-2416.

* Madison, J. (2010). Agile-Architecture Interactions. IEEE Software, 27(2), 41-47.

* McConnell, S. (2007). Technical Debt. 10x Software Development [cited 2010 June 14];
http://blogs.construx.com/blogs/stevemcc/archive/2007/11/01/technical-debt-2.aspx.

* Mills, J. A. (1985). A Pragmatic View of the System Architect. Comm. ACM, 28(7),
7 17

* Nord, R. L., & Tomayko, J. E. (2006). Software Architecture-Centric Methods and Agile
Development. IEEE Software, 23(2), 47-53.

Copyright © 2011 Philippe Kruchten 183

References (4)

* McConnell, S. (20087) Notes on Technical Debt, Blog post at:
http://blogs.construx.com/blogs/stevemcc/archive/2007/11/01/technical-debt-2.aspx

* Parsons, R. (2008). Architecture and Agile Methodologies—How to Get Along. Tutorial
At WICSA 2008, Vancouver, BC.

* Qumer, A., & Henderson-Sellers, B. (2008). An evaluation of the degree of agility in six
agile methods and its applicability for method engineering. Information and Software
Technology, 50(4), 280-295.

* Rendell, A. (2009) "Descending from the Architect's Ivory Tower," in Agile 2009
Conference, A. Sidky, et al., eds. IEEE Computer Society, pp. 180-185.

* Rozanski, N., & Woods, E. (2005). Software Systems Architecture: Working With
Stakeholders Using Viewpoints and Perspectives. Addison-Wesley.

* Special issue of Cutter IT Journal, edited by I. Gat (October 2010) Cutter IT Journal, 23
(10).

* Sterling, C. (2010) Managing Software Debt, Addison-Wesley.

* Wiegers, K. (1999). First Things First: Prioritizing Requirements. Software Development
Magazine, 7(9), 48-53.

* Woods, E. (2010). Agile Principles and Software Architecture, presentation at OOP 2010
Conf., Munich, Jan 26.

* Saaty, T. (1990). How to make a decision: The analytic hierarchy process. European
journal of operational research, 48(1), 9-26.

Copyright © 2011 Philippe Kruchten 184

Copyright © 2011 Philippe Kruchten 71

