Agility and Architecture December 2010

Software architecture and
agile software development:
A clash of two cultures?

Philippe Kruchten, ph.o., peng.
University of British Columbia, Vancouver, Canada

Philippe Kruchten, rh.p,, peng, csop

Professor of Software Engineering
NSERC Chair in Design Engineering

Department of Electrical and Computer Engineering
University of British Columbia
Vancouver, BC Canada
pbk@ece.ubc.ca

Founder and president

Kruchten Engineering Services Ltd
Vancouver, BC Canada
philippe@kruchten.com

Copyright © 2009-10 by KESL 3

Copyright © 2010 by KESL 1

Agility and Architecture December 2010

Agile & Architecture? Oil & Water?

* Paradox

* Oxymoron

* Conflict

* Incompatibility

Copyright © 2009-10 by KESL 4

. Outline

e Agility??
. » Software architecture?
* Astory
. e Seven viewpoints on a single
. problem

* The danger of technical debt
* The zipper model

* Aclash of two cultures

* Going forward

Sotware

Copyright © 2009-10 by KESL 5

Copyright © 2010 by KESL 2

Agility and Architecture December 2010

What is Agility?

* Jim Highsmith (2002):

— Agility is the ability to both create and respond to
change in order to profit in a turbulent business
environment.

* Sanjiv Augustine (2004):
— Iterative and incremental
— Small release
— Collocation
— Release plan/ feature backlog
— Iteration plan/task backlog

Copyright © 2009-10 by KESL 6

Agile Values: the Agile Manifesto

We have come to value:

Individuals and interactions over process and tools,
Working software over comprehensive documents,
Customer collaboration over contract negotiation,
Responding to change over following a plan.

That is, while there is value in the items on the right,
we value the items on the left more.

Source: http://www.agilemanifesto.org/

Copyright © 2009-10 by KESL 7

Copyright © 2010 by KESL 3

Agility and Architecture December 2010

Getting at the Essence of Agility

* Software development is a knowledge activity
— Not production, manufacturing, administration...
* The “machines” are humans

* Dealing with uncertainty, unknowns, fear,
distrust
* Feedback loop ->

— reflect on business, requirements, risks, process,
people, technology

e Communication and collaboration
— Building trust

Agile Methods

* XP = eXtreme Programming (K. Beck)

* SCRUM (K. Schwaber, J. Sutherland)

* Adaptive development process (J. Highsmith)

* Lean Software Development (M. Poppendieck)

* Crystal (A. Cockburn)

* Feature Driven Development (S. Palmer)
* Agile Unified Process (S. Ambler)
* etc., etc...

Copyright © 2010 by KESL 4

Agility and Architecture December 2010

Different methods for different issues

XP
practices

Scrum
management

Lean
principles

Copyright © 2009-10 by KESL 10

Who wants to not be agile?

* Or an agile organization ??
— And not just in an organization “using agile”

* |Is there some metric, a unit of agility? A
means to measure the level of agility?

Copyright © 2009-10 by KESL 11

Copyright © 2010 by KESL 5

Agility and Architecture December 2010

A short history of software architecture

NATO conference (1969) .
Box & arrows (1960s-1980s) .
Views & viewpoints (1990s-2000)

ADLs (1980s-2000s)

Architectural design methods (1990s-2000s)
Standards, reference architectures (1995-...)
Architectural design decisions (2004-...)

Copyright © 2009-10 by KESL 13

IEEE 1471-2000 Software Architecture

“Architecture is the fundamental organization
of a system embodied in its components, their
relationships to each other and to the
environment, and the principles guiding its
design and evolution.”

Copyright © 2009-10 by KESL 14

Copyright © 2010 by KESL 6

Agility and Architecture

ISO/IEC 42010

 Architecture: fundamental conception of a
system in its environment embodied in
elements, their relationships to each other
and to the environment, and principles
guiding system design and evolution

Copyright © 2009-10 by KESL 15

Software Architecture ‘ ’

Software architecture encompasses the set of
significant decisions about

* the organization of a software system,

* the selection of the structural elements and
their interfaces by which the system is
composed together with their behavior as
specified in the collaboration among those
elements,

* the composition of these elements into
progressively larger subsystems,

Grady Booch, Philippe Kruchten, Rich Reitman, Kurt Bittner; Rational, circa 1995
(derived from Mary Shaw) Copyright © 2009-10 by KESL 16

Copyright © 2010 by KESL

December 2010

Agility and Architecture December 2010

Software Architecture (cont.) ‘ '

* the architectural style that guides this
organization, these elements and their interfaces,
their collaborations, and their composition.

» Software architecture is not only concerned with
structure and behavior, but also with usage,
functionality, performance, resilience, reuse,
comprehensibility, economic and technological
constraints and tradeoffs, and aesthetics.

Copyright © 2009-10 by KESL 17

Software architecture...

 architecture = { elements, form, rationale } *
Perry & Wolf 1992

* A skeleton, not the skin

* More than structure

* Embodies or addresses many “ilities”
* Executable, therefore verifiable

Copyright © 2009-10 by KESL 18

Copyright © 2010 by KESL 8

Agility and Architecture December 2010

Software architecture...

* ...is a part of Design
— But not all design is architecture
— ... which part of design, then?

... includes Structure, and much more
— behaviour, style, tools & language

... includes Infrastructure, and much more

... is part of System architecture

Copyright © 2009-10 by KESL 19

Perceived Tensions
Agility- Architecture

* Architecture = Big Up-Front Design
* Architecture = massive documentation
* Architects dictate form their ivory tower

* Low perceived or visible value of architecture
* Loss of rigour, focus on details

* Disenfranchisement

* Quality attribute not reducible to stories

Hazrati, 2008
Rendell, 2009
Blair et al. 2010, etc.ZO

Copyright © 2009-10 by KESL

Copyright © 2010 by KESL 9

Agility and Architecture December 2010

Perceived Tensions
Agility- Architecture

Adaptation versus Anticipation

e

Highsmith 2000

Copyright © 2009-10 by KESL 21

Story of a failure

* Large re-engineering of
a complex distributed
world-wide system;

2 millions LOCin C,
C++, Cobol and VB

* Multiple sites, dozens of data repositories, hundreds
of users, 24 hours operation, mission-critical
(Shillions)

* xP+Scrum, 1-week iterations, 30 then up to 50
developers

* Rapid progress, early success, features are demo-able
* Direct access to “customer”, etc.
* A poster project for scalable agile development

Copyright © 2009-10 by KESL 22

Copyright © 2010 by KESL 10

Agility and Architecture December 2010

Hitting the wall

* After 4 ¥4 months, difficulties
to keep with the 1-week
iterations

* Refactoring takes longer
than one iteration

* Scrap and rework ratio
increases dramatically

* No externally visible progress anymore

* |terations stretched to 3 weeks

 Staff turn-over increases

* Project comes to a halt

* Lots of code, no clear architecture, no obvious way forward

Copyright © 2009-10 by KESL 23

. Outline

e Agility??
. » Software architecture?
* Astory
. e Seven viewpoints on a single
. problem

The danger of technical debt
The zipper model

A clash of two cultures

* Going forward

Copyright © 2009-10 by KESL 24

Copyright © 2010 by KESL 11

Agility and Architecture December 2010

Issues
Semantics
Scope
Lifecycle
Role
Description
Methods
Value & cost

N o Uk W E

Copyright © 2009-10 by KESL 26

. Semantics

* What do we mean by “architecture”?

 What do we mean by “software architecture”?

Copyright © 2009-10 by KESL 27

Copyright © 2010 by KESL 12

Agility and Architecture December 2010

Enterprise vs. Solution Architecture

* Enterprise architecture is a description of an
organization’s business processes, IT software

and hardware, people, operations and
projects, and the relationships between them.

Source BABOK v2 2009

* System architecture

e Software architecture .

Copyright © 2009-10 by KESL 28

Architecting is making decisions

The life of a software architect is a long (and
sometimes painful) succession of suboptimal
decisions made partly in the dark.

Copyright © 2009-10 by KESL 31

Copyright © 2010 by KESL 13

Agility and Architecture December 2010

Architecture = Design = Code

Architecture decisions are the
most fundamental decisions
and changing them will have e Architecture

significant ripple effects. involves a set of

architecture Sstrategic design
ian decisions, rules or
patterns that
constrain design
and code

hlementation

Copyright © 2009-10 by KESL 32

Issues
Semantics
Scope
Lifecycle
Role
Description
Methods
Value & cost

N o Uk W

Copyright © 2009-10 by KESL 33

Copyright © 2010 by KESL 14

Agility and Architecture

. Scope

How much architecture “stuff” do you really
need?

It depends...

It depends on your context

Copyright © 2009-10 by KESL 34

© No U kA WDNPR

Context attributes

Size
Criticality
Age of system

Criticality

Rate of change £ Rate of

Business model ' change CF
Domain = \
Team distribution Governance e |
Governance | Team
\Distribution/
Copyright © 2009-10 by KESL 35

| Business :‘

Copyright © 2010 by KESL

December 2010

15

Agility and Architecture December 2010

All software-intensive systems
have an architecture

* How much effort should you put into it varies
greatly

75% of the time, the architecture is implicit
— Choice of technology, platform

— Still need to understand the architecture

Novel systems:

— Much more effort in creating and validating an
architecture

Key drivers are mostly non-functional:
— Runtime: Capacity, performance, availability, security
— Non runtime: evolvability, regulatory, i18n/L10n...

Copyright © 2009-10 by KESL 36

Issues
Semantics
Scope
Lifecycle
Role
Description
Methods
Value & cost

N o Uk W N

Copyright © 2009-10 by KESL 37

Copyright © 2010 by KESL 16

Agility and Architecture

. Lifecycle

* When does architectural activities take place?
* The evil of “BUFD” = Big Up-Front Design

* “Defer decisions to the last responsible
moment”

* YAGNI = You Ain’t Gonna Need It
e Refactor!

Copyright © 2009-10 by KESL 38

Architectural Effort During the Lifecycle

N A -Er
Inception Elaboration Construction Transition

time

_Y_I

Majority of architectural design activities

Copyright © 2009-10 by KESL 39

Copyright © 2010 by KESL

December 2010

17

Agility and Architecture December 2010

Little dedicated architectural effort

Inception Construction Transition

\7

N\ J
Minimal pure
\ Ideal realm of agile
Architectural ractices 9
Activities p
Copyright © 2009-10 by KESL 40

7

Ilterations and Phases

Inception Elaboration Construction Transition

Preliminary || Architect. Architect.| Devel. Devel. Devel. Transition Transition
Iteration Iteration | Iteration Iteration Iteration |lteration | Iteration Iteration
Internal Releases with Releases with main
focus on architecture focus on features

An architectural iteration focuses in putting in place major architectural
elements, resulting in a baseline architectural prototype at the end of
elaboration.

Copyright © 2009-10 by KESL 41

Copyright © 2010 by KESL 18

Agility and Architecture

Teams using agile development practices

Inception

e

Elaboration # Construction and Transition

[Management team]—»[Management team]

[Architecture team]

r Architecture Feature team 1

Feature team 2
[Prototyping team |\ | Infrastructure

l Feature team 3 I
team A

\ Infrastructure
team B

Copyright © 2009-10 by KESL integration team 43

- A

Scope
Lifecycle
Role
Description
Methods
Value & cost

Issues

Semantics

Copyright © 2009-10 by KESL 44

Copyright © 2010 by KESL

December 2010

19

Agility and Architecture December 2010

New Role — Agile Architect ?

* A.Johnston defines the agile architect, but it does
not seems to be any different from a software
architect before agile methods came in.

* Combination of
— Visionary - Shaper
— Designer — making choices
— Communicator — between multiple parties
— Troubleshooter
— Herald — window of the project
— Janitor — cleaning up behind the PM and the developers

Copyright © 2009-10 by KESL 46

Functions of the software architect

Definition of the architecture Delivery of the architecture

* Architecture definition * Ownership of the big picture
* Technology selection * Leadership
* Architectural evaluation * Coaching and mentoring
* Design, development and
* Management of non Testing
functional requirements
* Architecture collaboration * Quality assurance
Brown 2010

Copyright © 2009-10 by KESL 47

Copyright © 2010 by KESL 20

Agility and Architecture

Architect as Service Provider?

Client “... as you wish”
orientation

Communicati Ask client for

on concepts, design
Learning Wind wane
Change Let architecture
management grow, hope it will
emerge
Practical Works as
Support developer
Process Avoids rules

Balances concerns

Drives concept and
design in close loops

Turns feedback into
improvements

Organizes architecture
change process

Supports developer,
give a hand at coding

Set up rules but help
break them (or evolve
them) when needed

Copyright © 2009-10 by KESL

Client better change his
view

Comes down from the
mountain with a design

Ignores feedback

Defends architecture
from change requests

Avoids developers

Forbids rule breaking

Adapted from Faber 2010 .

* Maker and Keeper of Big
decisions

— Bring in technological
changes

— External collaboration

— More requirements-facing

— Gatekeeper

— Fowler: Architectus reloadus

Two styles of software/system
architects

* Mentor, Troubleshooter,
and Prototyper

— Implements and try
architecture

— Intense internal collaboration
— More code-facing

— Fowler: Architectus oryzus

Only big new projects need both or separate people
Copyright © 2009-10 by KESL 49

Copyright © 2010 by KESL

December 2010

21

Agility and Architecture

A. Reloadus and A. Oryzus ecological niches

Inception Elaboration # Construction and Transition

[Management team]—»[Management team]

A. Reloadus
)/(Architecture
\L team

[Prototyping team

[Architecture team]

Feature team 1

Initial team

Feature team 2

| Infrastructure Feature team 3
team A

\ Infrastructure
team B
Copyright © 2009-10 by KESL integration team 51

il

A. Oryzus

A. Reloadus and A. Oryzus ecological niches

Inception Elaboration ‘L Construction and Transition
A. Reloadus

[Management team]—> Managemen

Architecture team

(Architecture

Initial team L team

[Prototyping team

Feature team 2

ozl)

/ ructur
team B

Copyright © 2010 by KESL

December 2010

22

Agility and Architecture

* Single “problem” .
* “Building Design”

* References:
— SEI: ATAM, CBAM, QAW °
— RUP: 4+1 Views
— Fowler: Architectus Oryzus

(o)

Enterprise Architect Vs.
Solution Architect

Solution Architect Enterprise Architect

* Authority e Advisor / Consultant

* Technical Decision Maker * Building Bridges

* Requirements 9 Architecture * Business / IT Alignment

Governance over multiple
“problems”

“City Planning”

References:
— Zachman
— TOGAF, DODAF

— |EEE 1471 — DYA, IAF, GEM, BASIC,...
— IEEE 1471
Source Eltjo Poort
looiCQ Copyright © 2009-10 by KESL 53

* Assessing technical risks

* Participation in project planning

Charter of an Architect or an
Architecture Team

* Defining the architecture of the system
* Maintaining the architectural integrity of the system

* Working out risk mitigation strategies/approaches

* Proposing order and content of development iterations
* Consulting with design, implementation, and integration teams
* Assisting product marketing and future product definitions

Circa 1992, Published in Kruchten 1999

Copyright © Z309-10 by KESL

Copyright © 2010 by KESL

December 2010

23

Agility and Architecture

What do architects actually do?

Getting input:

Architecting: -user, requirement
-design -other architecture
-validation -technology

-prototyping
-documenting
-etfc....

Providing Information
Kruchten 2008 -communicating architecture
-assséisting other stakeholders

Copyright © 2009-10 by KESL

Three main constituencies

. Customers
Domain experts

Requirements eng.

Legislators Product & marketing managers

Analysts

Architect

L 4 S

Project Developers
manager

Top management Subcontractors

Subcontractors management Technology vendors

Airlines, unions, etc. Copyright © 2009-10 by KESL 64

Copyright © 2010 by KESL

December 2010

24

Agility and Architecture

Project

manager

Main boundaries (1)

Analysts
Needs
Requirements Opportunities
NFR
Priorities
Cost

e Architect esssss==e Developers

Copyright © 2009-10 by KESL 65

Project
manager

Release plan

Main boundaries (2)

B. A.

Resources /

“Time-box”

S~

/ Developers
Risks
technical
programmatic
Work partitioning
Dev costgeht © 2009-10 by KESL 66

Copyright © 2010 by KESL

December 2010

25

Agility and Architecture December 2010

Main boundaries (3)

B. A.

\ “The Seam”

Constraints

Decisions
Architect Interfaces
Stuff to use
Proi Prototypes
roject Evaluation Developers
manager Costs
“push back”
Copyright © 2009-10 by KESL 67
B.A. Terminology
Abstraction level
Volume
Emphasis
Architect
Project
Developers
manager
Copyright © 2009-10 by KESL 68

Copyright © 2010 by KESL 26

Agility and Architecture

Translation - Coordination

Developers

B.A 1

"

Architect

Developers
2

Project Developers
manager 3

Copyright © 2009-10 by KESL 69

N o v bk W DN

Scope
Lifecycle
Role
Description
Methods
Value & cost

Issues

Semantics

Copyright © 2009-10 by KESL 76

Copyright © 2010 by KESL

December 2010

27

Agility and Architecture

Architectural description

Metaphor (XP)
Prototype
Software architecture document

Logical View Implementation

View
Use of UML?
View
U M L' ba Sed tOO | S ? Process Deployment
View View
Code?
Copyright © 2009-10 by KESL 77

© No U kA WDNPR

Again, it depends on the context

(oD

Slze / - ,,;\ \\ Size /‘ / - ,,;\
Criticality ﬂ: gii:; /‘ \\ // E: Criticality /‘
Age of system) }\, ,/7
/,,/ . h ‘\\\ // _ ‘\\\
/ \ / \
Rate of Change | Rateof | | Business |
: \ change \ model /
Business model < g
Stable architecture S SN
kil \ L/ stable |
Team distribution \Governance) - \ \architecturs
Governance O (Team) R
\Rlszlbuty/
Copyright © 2009-10 by KESL 78

Copyright © 2010 by KESL

December 2010

28

Agility and Architecture

Copyright © 2009-10 by KESL

79

Boxology Issues

Ill

General “message” or metaphor
is OK, but...

* Fuzzy semantics:

— What does a box denote?
* Function, code, task, process, processor, data?

— What does an arrow denote?
* Data flow, control flow, semantic dependency, cabling?
* Diverging interpretation
Many distinct concerns or issues addressed in
one diagram

Copyright © 2009-10 by KESL

Copyright © 2010 by KESL

December 2010

29

Agility and Architecture

Of Views, Viewpoints and Models

Viewpoint

<<defines>>

X

Stakeholder

Views are projections of a model for a particular stakeholder

Copyright © 2009-10 by KESL 86

Views & Viewpoints

e Rational Approach (all circa 1990)
* S4V at Siemens
e BAPO/CAFR at Philips

* |EEE Std 1471:2000 Recommended practice for software
architecture description

* ISO/IEC 42010: 2007 Recommended practice for architectural
description of software-intensive systems

* ISO/IEC 42010: 2010 Architectural description

* Clements et al. (2005). Documenting Software Architecture,
Addison-Wesley.

* Rozanski, N., & Woods, E. (2005). Software Systems Architecture:
Working With Stakeholders Using Viewpoints and Perspectives.
Addison-Wesley.

Copyright © 2009-10 by KESL 87

Copyright © 2010 by KESL

December 2010

30

Agility and Architecture December 2010

The 4+1 view model of architecture

Programmers

End-user, designers
Software management

Functionality

Users/Analysts/Testers Use Case

Behavior iew
System Integrators System Engineering
Performance System topology
Scalability Delivery, installation
Throughput Communication

Kruchten 1995 Copyright © 2009-10 by KESL 88

1S042010:2010

89

Copyright © 2009-10 by KESL

Copyright © 2010 by KESL

Agility and Architecture

Architecture Description Languages

* Rapide (Stanford)

* ACME (CMU)

* Wright (CMU)

* C2 (UClIrvine)

* Darwin (Imperial Coll.) -> Koala
* Archimate

* AADL (based on MetaH)

> etc...

Copyright © 2009-10 by KESL 90

UML 2.0

* A notation

e Better “box and arrows”
« Crisper semantics UNIFIED o
e Almost an ADL ? MODELING

LANGUAGE

* Model-driven design,
* Model-driven architecture.

Copyright © 2009-10 by KESL 91

Copyright © 2010 by KESL

December 2010

32

Agility and Architecture

N o vk W

Issues
Semantics
Scope
Lifecycle
Role
Description
Methods
Value & cost

Copyright © 2009-10 by KESL

Architectural design methods

Many agile developers do not know (much)
about architectural design

Agile methods have no explicit guidance for
architecture

— Metaphor in XP
— Technical activities in scrum

Relate this to Semantics and Scope issue

May have to get above the code level

Copyright © 2009-10 by KESL

Copyright © 2010 by KESL

December 2010

33

Agility and Architecture

RUP (IBM)
SAV,... (Siemens)

* Etc.

Architectural Methods

ADD, ATAM, QAW (SEI)

BAPO/CAFR (Philips)

Software Architecture Review and Assessment
(SARA) handbook

Copyright © 2009-10 by KESL 94

Ideas

ﬂ

Context, Constraints

Architectural
Analysis

lll---ll*“

.,

Architecturally

Significant

Requirements
Copyright © 2009-10 by KESL

[

Architectural Design

Architectural
Assets

Architecture

L4
Architectural _+*

Synthesis _ 4*
Backlog taanass®®’ &
.
]
]
Architectural ¥
Evaluatio‘r;"’

<l-l““

Evaluation results

Source: Hofmeister, Kruchten, et al., 2005, 2007 95

Copyright © 2010 by KESL

December 2010

34

Agility and Architecture December 2010

Iterative Architecture Refinement

* There are no fixed prescriptions for
systematically deriving architecture from
requirements; there are only guidelines.

* Architecture designs can be reviewed.

* Architectural prototypes can be thoroughly
tested.

* lterative refinement is the only feasible
approach to developing architectures for
complex systems.

Copyright © 2009-10 by KESL 96

Issues
Semantics
Scope
Lifecycle
Role
Description
Methods
Value & cost

N o Uk WD

Copyright © 2009-10 by KESL

Copyright © 2010 by KESL 35

Agility and Architecture December 2010

Value and Cost

* Value: to the business (the users, the
customers, the public, etc.)

e Cost: to design, develop, manufacture, deploy,
maintain

* Simple system, stable architecture, many small
features:

— Statistically value aligns to cost
e Large, complex, novel systems ?

Copyright © 2009-10 by KESL 98

Value and cost

 Architecture has no (or little) externally visible
“customer value”

* Iteration planning (backlog) is driven by
“customer value”

* Ergo: architectural activities are not given
attention

* No BUFD & YAGNI & Refactor!

Copyright © 2009-10 by KESL

Copyright © 2010 by KESL 36

Agility and Architecture

arguments

Copyright © 2009-10 by KESL

Value and cost

* Cost of development is not identical to value

* Trying to assess value and cost in monetary
terms is hard and often leads to vain

* Use “points” for cost and “utils” for value
* Use simple technique to give points and utils.

100

* Value in Dollars ?
— Increases confusion value vs. cost
— Very hard to define

* Priority
— High, medium, low
— MoSCoW

* Relative index

o “Utils”

* Matches “points” for cost

Copyright © 2009-10 by KESL

Units of Cost and Value

Copyright © 2010 by KESL

December 2010

37

Agility and Architecture

QOutline

Agility??
Software architecture?
A story

Seven viewpoints on a single
problem

The danger of technical debt
The zipper model

A clash of two cultures
Going forward

Copyright © 2009-10 by KESL 103

Technical Debt

Concept introduced by Ward Cunningham
Often mentioned, rarely studied

All experienced SW developers “feel” it.
Drags long-lived projects and products down

Cunningham, OOPSLA 1992

Copyright © 2009-10 by KESL 104

Copyright © 2010 by KESL

December 2010

38

Agility and Architecture December 2010

Technical Debt (S. McConnell)

* Implemented features (visible and invisible) =
assets = non-debt

* Type 1: unintentional, non-strategic; poor design
decisions, poor coding

* Type 2: intentional and strategic: optimize for the
present, not for the future.

— 2.A short-term: paid off quickly (refactorings, etc.)
* Large chunks: easy to track
* Many small bits: cannot track

— 2.B long-term

McConnell 2007

Copyright © 2009-10 by KESL 105

Technical Debt (M. Fowler)

Presentation at Agile Vancouver conference, 2009

Copyright © 2009-10 by KESL 106

Copyright © 2010 by KESL 39

Agility and Architecture

Technical Debt (1)

$15 St 10 Bt
)
$5 $3

Bl -

N -~

_a Jss (b Js3

8 KX 8 K&

$25 827

Copyright © 2009-10 by KESL

$20 $19 $18
Technical Debt (2)
PR 815 12 B 12 BE

108

Copyright © 2010 by KESL

December 2010

40

Agility and Architecture December 2010

Technical Debt (3)

s13 = [EER +52
Ca $5

B -

El & B ss
J

.
$30

Copyright © 2009-10 by KESL 109

Same Dilemma

Adaptation versus Anticipation

A

Highsmith 2000

Copyright © 2009-10 by KESL 110

Copyright © 2010 by KESL 41

Agility and Architecture December 2010

What'’s in your backlog?

Visible Invisible

Positive Visible Hidd.en,
Feature architectural
Value feature
Negative Technical
Value Debt

Copyright © 2009-10 by KESL 111

Planning

* From requirements derive:
— Architectural requirements
— Functional requirements

* Establish
— Dependencies
— Cost

* Plan interleaving:
— Functional increments
— Architectural increments

Copyright © 2009-10 by KESL 112

Copyright © 2010 by KESL 42

Agility and Architecture

Weaving functional
and architectural chunks

DDDDDDD

Copyright © 2009-10 by KESL

113

Benefits

Gradual emergence of architecture

Validation of architecture with actual
functionality

Early enough to support development

Not just BUFD
No YAGNI effect

Copyright © 2009-10 by KESL

114

Copyright © 2010 by KESL

December 2010

43

Agility and Architecture

QOutline

Agility??
Software architecture?
A story

Seven viewpoints on a single
problem

The danger of technical debt
The zipper model

A clash of two cultures

* Going forward

Copyright © 2009-10 by KESL

115

Agility as a Culture

Culture

Beliefs, Norms .
Rituals

Jargon

Values Behaviours
Reflect beliefs Reflect values

Manifesto!

Copyright © 2009-10 by KESL R. Thomsett 2007

116

Copyright © 2010 by KESL

December 2010

44

Agility and Architecture

Agility and Architecture as Cultures

C' Culture

Beli Beliefs, Norms

Values Be Behaviours
Reflect beliefs R Reflect values

Rituals
Jargon

N

Copyright © 2009-10 by KESL R. Thomsett 2007 117
Stages
* Ethnocentrism
— Denial
— Defense

* Ethnorelativism
— Acceptance
— Integration

Copyright © 2009-10 by KESL

118

Copyright © 2010 by KESL

December 2010

45

Agility and Architecture December 2010

Learn from the “other” culture

* Agilists
— Exploit architecture to scale up
— Exploit architecture to partition the work
— Exploit architecture to communicate
* Architects
— Exploit iterations to experiment
— Exploit functionality to assess architecture
— Exploit growing system to prune (KISS), keep it lean

Copyright © 2009-10 by KESL 119

. Outline

e Agility??
. » Software architecture?
* Astory
. e Seven viewpoints on a single
. problem

The danger of technical debt
The zipper model

A clash of two cultures

* Going forward

Copyright © 2009-10 by KESL 120

Copyright © 2010 by KESL 46

Agility and Architecture December 2010

Recommendations

Understand your context

— How much architecture do
you need?

* Define architecture: 1. Semantics
— Meaning 2. Scope
— Boundaries 3. Lifecycle
— Responsibility :' EOIe o
- . escription
— Tactics (methods) P
. 6. Methods
— Representation
7. Value & cost
Recommendations

No ivory tower

— Architect is one of the team (not one of “them”)

— Define an “architecture owner” (analog to product owner)
— Make architecture visible, at all time

Build early an evolutionary architectural prototype

— Constantly watch for architecturally significant requirements
— Use iterations to evolve, refine

— Understand when to freeze this architecture (architectural
stability)

Weave functional aspects with architectural (technical)
aspects (“zipper”)

Copyright © 2009-10 by KESL 122

Copyright © 2010 by KESL 47

Agility and Architecture

Recommendations

Do not jump on a (labeled) set of agile practices
— Understand the essence of agility (why and how)
Select agile practices for their own value

— In your context, not in general

Do not throw away all the good stuff you have

Where do you really stand in this continuum?

Adaptation versus Anticipation

S

Copyright © 2009-10 by KESL 123

The Twelve Architect’s Practices

¢ Deliver work incrementally

» Define clear design principles

¢ Capture design decisions & rationale
¢ Define components clearly

Allow for Change

¢ Create “good enough” models & documents
¢ Define solutions for cross-cutting concerns
Documents ¢ Deliver working examples and prototypes

Delivery over

People over ¢ Have customers for all deliverables
Processes ¢ Share information simply

Collaboration over LTI
¢ Focus on architectural concerns

Contracts o Address real stakeholder concerns

E. Woods 2010 Copyright © 2009-10 by KESL 124

Copyright © 2010 by KESL

December 2010

48

Agility and Architecture December 2010

Practices: Allow for Change

* Deliver work incrementally
— visible progress, early feedback, delivers something useful
— allow others to be involved in decisions
* Define clear design principles
— small set easily understood & accepted
— choose your battles (high value decisions)
* Capture decisions and rationale
— help people to understand “why” not just “what” and “how”
— helps a self-organising team to make good decisions
* Define components clearly
— allow confident use and extension
— responsibilities, interfaces, interactions
E. Woods 2010

125 Copyright © 2009-10 by KESL

Practices: People over Processes
and Tools

* Have customers for every deliverable
— make sure every deliverable has a purpose
— create each deliverable to be used by its
customers
e Share information using simple tools
— Wiki, SharePoint, CMS based web sites, ...
— ensure easy access, comment and update

— avoid situations where a desktop client is needed
E. Woods 2010

126 Copyright © 2009-10 by KESL

Copyright © 2010 by KESL 49

Agility and Architecture December 2010

Practices: Collaboration over Contracts

Work in the teams
— don’t drop documents and walk away, talk to people
— develop things jointly

— development teams contain a lot of knowledge &
experience

* Focus on architectural concerns
— avoid other people’s areas of responsibility
— address quality properties and cross-cutting concerns
— these cross-cutting areas are often neglected otherwise
Address real stakeholder concerns
— which stakeholder cares about each piece of your work?
— prioritise work

E. Woods 2010

127 Copyright © 2009-10 by KESL

Practices: Value Delivery over
Documents

Create “good enough” models and documents

— but make sure they are good enough!

Define solutions for cross-cutting concerns

— security / DR / HA / scalability / ...

— rarely solved well by the individual teams

— typically need to work across systems

Deliver working examples and prototypes

— if not raw code, something else that works

— may be useful directly or for research purposes

— conventional code or a service or a spreadsheet or ...
E. Woods 2010

128 Copyright © 2009-10 by KESL

Copyright © 2010 by KESL 50

Agility and Architecture

Agile Architecture Interaction Points

Madison 2010

Copyright © 2009-10 by KESL 129

Interaction Points

1. Up-front Planning: Set up the general
direction
2. Storyboarding: Structure business needs and

architectural work, getting everyone on
board

3. Sprint/Iteration: Building functionality as part
of the team when valuable

4. Working Software: Review deliverable to
assess architectural state

Madison 2010

Copyright © 2009-10 by KESL 130

Copyright © 2010 by KESL

December 2010

51

Agility and Architecture December 2010

Critical Skills Needed

)

. Sprintable form: Breaking architectural work into
small, measurable units

2. Product Owner: Quantifying the architecture in
terms of clear business value

3. Architectural backlog: tracking architectural
concerns and Balancing them with business
priorities

4. Enterprise architecture: Knowing the larger
architectural picture and using each project to

advance it
Madison 2010

Copyright © 2009-10 by KESL 131

Architectural Function

1. Communication: Keeping all stakeholders
informed about the architecture’s value and
state

2. Quality attributes: Measuring or assessing
the “ilities”

3. Design patterns: Outlining the structures that
give form to the implementation work

4. Hardware and software stack: Choosing
appropriate technologies for the project

Madison 2010

Copyright © 2009-10 by KESL 132

Copyright © 2010 by KESL 52

Agility and Architecture December 2010

Hitting the Wall (revisited)

* What happened?

Copyright © 2009-10 by KESL 133

What is agility? revisited

Agility is the ability of a an
organization to react and adapt

to changes in its environment

faster than the rate of these changes.

— With thanks to Steve Adolph

Adaptation versus Anticipation

Copyright © 2009-10 by KESL 134

Copyright © 2010 by KESL 53

Agility and Architecture

Agility is a persistent behaviour or ability of a
sensitive entity that exhibits flexibility to
accommodate expected or unexpected
changes rapidly, follows the shortest time
span, uses economical, simple and quality
instruments in a dynamic environment and
applies updated prior knowledge and
experience to learn from the internal and

external environment.
Qumer & Henderson-Sellers 2008

Copyright © 2009-10 by KESL 135

Do you need an Architect?

“In order to work, evolutionary design needs a
force that drives it to converge. This force can
only come from people — somebody on the
team has to have the determination to ensure
that the design quality stays high.”

Martin Fowler 2002

Copyright © 2009-10 by KESL 136

Copyright © 2010 by KESL

December 2010

54

Agility and Architecture

The first matrix | designed was quite naturally
wperfect....

... a triumph equaled only

by its monumental failure.

.. | have since come to understand that the
answer eluded me because it required a lesser
mind, or perhaps a mind less bound by the

parameters of perfection.

Copyright © 2010 by KESL

December 2010

55

Agility and Architecture December 2010

References (1)

* Agile Alliance (2001), "Manifesto for Agile Software Development," Retrieved May 1st, 2007 from
http://agilemanifesto.org/

* Abrahamsson, P., Ali Babar, M., & Kruchten, P. (2010). Agility and Architecture: Can they Coexist?
IEEE Software, 27(2), 16-22.

* Ambler, S. W. (2006). Scaling Agile Development Via Architecture [Electronic Version]. Agile
Journal, from http://www.agilejournal.com/content/view/146/

* Augustine, S. (2004), Agile Project Management, Addison Wesley Longman
e Blair, S., Watt, R., & Cull, T. (2010). Responsibility-Driven Architecture. IEEE Software, 27(2), 26-32.

* Brown, S. (2010), "Are you an architect?," InfoQ, http://www.infoq.com/articles/brown-are-you-a-
software-architect

* Clements et al. (2005). Documenting Software Architecture, Addison-Wesley.

e Clements, P, Ivers, J., Little, R., Nord, R., & Stafford, J. (2003). Documenting Software Architectures
in an Agile World (Report CMU/SEI-2003-TN-023). Pittsburgh: Software Engineering Institute.

e Faber, R. (2010). Architects as Service Providers. IEEE Software, 27(2), 33-40.
* Fowler, M. (2003). Who needs an architect? IEEE Software, 20(4), 2-4.
* Fowler, M. (2004) Is design dead? At http://martinfowler.com/articles/designDead.html

* Hazrati, V. (2008, Jan.6) "The Shiny New Agile Architect," in Agile Journal.
http://www.agilejournal.com/articles/columns/column-articles/739-the-shiny-new-agile-architect

* Johnston, A., The Agile Architect, http://www.agilearchitect.org/
* Kruchten, P. (1995). The 4+1 View Model of Architecture. IEEE Software, 12(6), 45-50.

e Kruchten, P. (1999). The Software Architect, and the Software Architecture Team. In P. Donohue
(Ed.), Software Architecture (pp. 565-583). Boston: Kluwer Academic Publishers.

Copyright © 2009-10 by KESL 141

References (2)

e Kruchten, P. (March 2001?. The Tao of the Software Architect. The Rational Edge. At http://
www-106.ibm.com/developerworks/rational/library/4032.html
. \I;&uclhten, P. (2003). The Rational Unified Process: An Introduction (3rd ed.). Boston: Addison-
esley.
* Kruchten, P. (2004). Scaling down projects to meet the Agile sweet spot. The Rational Edge. http://
www-106.ibm.com/developerworks/ rational/library/content/RationalEdge/aug04/5558.html

e Kruchten, P. (2008). What do software architects really do? Journal of Systems & Software, 81(12),
2413-2416.

* Madison, J. (2010). Agile-Architecture Interactions. IEEE Software, 27(2), 41-47.

e Mills, J. A. (1985). A Pragmatic View of the System Architect. Comm. ACM, 28(7), 708-717.

* Nord, R. L., & Tomayko, J. E. (2006)). Software Architecture-Centric Methods and Agile
Deveiopment. IEEE Software, 23(2), 47-53.

e Parsons, R. (2008). Architecture and Agile Methodologies—How to Get Along. Tutorial At WICSA
2008, Vancouver, BC.

* Qumer, A, & Henderson-Sellers, B. (2008). An evaluation of the degree of agility in six aﬁile
methods and its applicability for method engineering. Information and Software Technology, 50(4),
280-295.

* Rendell, A. (2009) "Descending from the Architect's Ivory Tower," in Agile 2009 Conference, A.
Sidky, et al., eds. IEEE Computer Society, pp. 180-185.

* Rozanski, N., & Woods, E. (2005). Software Systems Architecture: Working With Stakeholders Using
Viewpoints and Perspectives. Addison-Wesley.

* Wachowski, A., & Wachowski, L. (Writer) (2003). The Matrix Reloaded. Warner Bros.

* Woods, E. (2010). Agile Principles and Software Architecture, presentation at OOP 2010 Conf.,
Munich, Jan 26.

Copyright © 2009-10 by KESL 142

Copyright © 2010 by KESL 56

Agility and Architecture

World-class expertise
Working for you

Copyright © 2009-10 by KESL

143

Copyright © 2009-10 by KESL

144

Copyright © 2010 by KESL

December 2010

57

