
Chapter 2

A Conceptual Model of
Software Development

 “The purpose of science is not to analyze or describe but to make useful
models of the world. A model is useful if it allows us to get use out of it.”

Edward de Bono

To explore the many facets of software project management, we introduce a conceptual
model of software development. This model (or ontology) of software projects is
organized around eight key concepts and their relationships that are universal across all
software projects:

" Intent, Product, Work, People, Time, Quality, Risk & uncertainty, Cost and Value,

are found in some ways or another in every software development project, whatever
size, genre, type or color.

Outline
" Four core entities
" " Intent - Product - Work - People
" Three fundamental attributes
" " Time - Quality - Risk
" Project, defined
" Adding the concepts of Cost and Value
" Mapping of onto common project artifacts
" " Intent - Product - Work - People

Four core entities
There are four core entities in our model of software development: Intent, Product, Work
and People; see figure 1.

Figure 1: Four core concepts in software development: Intent, Work, People and Product

Intent
The concept of Intent denotes what the project is trying to achieve. The Intent defines
the scope of the project, the intentions and hopes of the key stakeholders, the
objectives. While we think of the intent as “the requirements” or “the specification”, in
practice Intent may take many diverse forms: a set of tests that the product must pass
contributes to define Intent. A set of software problem reports that must be dealt with
also indirectly defines Intent. Various constraints, implicit or explicit, internal or external
to the project will also affect Intent. And one constant of software projects is that they
are under pressure of a stream of change requests which modify the Intent.

Product
The concept of Product denotes the outcome of the project, what has been achieved.
This is the actual software, accompanied with any other artifacts that are needed to
make it a complete product: an installer, a set of data, the userʼs guide, some training
material, etc. Why arenʼt Intent and Product more or less equivalent? Why do we need
to distinguish them in our model? Intent precedes Product: Intent is an abstraction, a
virtuality that sketches the reality that the project is set to achieve. Even when the
product is “done” there may be discrepancies between the Intent and the Product; the
Intent may have evolved in the meantime, or the Product has come short in some ways
of the original Intent. These discrepancies between Intent and Product are the key
drivers for the project; they are the imbalance that makes it run. Imagine the relationship
between Intent and Product as a bungee cord: the further apart and the more energy
the project will expend to bring them closer.

Work
The concept of Work denotes the activities, tasks, steps that need to be accomplished
in order to turn Intent into Product. They often come defined by a process, or a method,
which attempts to describe a systematic way to build a product; some elements of Work
are defined “on-the-fly” in an ad hoc fashion. In many cases, a Work item produces or
refines some artifact: a document, a model, an idea, a piece of code, a report, formal or

informal. Some of these artifacts are only useful internally to the project, as stepping-
stones, and do not appear in any form in the final product. They are not “deliverables”.

People
The concept of People is important in modern software project management because
they are the main “engine” behind Work elements. Software development is an
intellectual activity that is very ʻhuman-intensiveʼ. Most of the work elements are done
by human beings, and only little of this work can be automated. So the availability and
the competence of the people are keys to get all the work done. Also most of the cost of
software development is associated with people. (We will often use the word Staff and
use the initial S to denote the concept of People and not clash with the P of product).

Three fundamental attributes
Each of these four core concepts has 3 attributes: Time, Quality and Risk.

Time
The concept of Time is orthogonal to our fundamental quadruple [Intent, Work, People,
Product]. Often we will use the phrase lifecycle to denote what happens with a project
over time. It is tempting to define a project linearly relative to time in 5 main steps: 1)
define completely the Intent, 2) derive from the Intent all the Work that needs to be
accomplished, 3) allocate work to People, and 4) People build the Product, 5) which
acceptance testing will show that it matches exactly the original Intent. This has been
tried again and again, but with very meager successes in software development for a
range of reasons that we will examine later on (chapter 5 and 6). In reality, we define
Intent gradually, and it tends to evolve throughout the project under various pressures
and demands for changes. We can therefore only define part of the Work at any point in
time, and allocate it to People, who will therefore only build part of a Product. This
partial product will influence back the Intent, through user feedback, or problem reports.
It will also influence how people will conduct the work in the future. Other chunks of
Intent are then carved out, more Work defined, and the Product will evolve until it
reaches a deliverable stage. All modern software development approaches are iterative
and incremental, and they define a project as a sequence over time:

{ [Intent1, Work1, People1, Product1],
 [Intent2, Work2, People2, Product2],
 …
 [Intentn, Workn, Peoplen, Productn] }

where Productn is the final ʻdeliverableʼ.

Figure 2: Intent, Work, People and Product evolve over Time

Quality
The concept of Quality is also an orthogonal notion to our fundamental quadruple
[Intent, Work, People, Product]. We can see quality as an attribute of each of them.
Quality of the Intent denotes how good we are at defining and planning a Product.
Quality of the Work denotes the quality of the process we use to develop software and
all the intermediate artifacts. Quality of the People denotes the competence and
diligence and dedication of the staff assigned to the project, and finally quality of the
product is a measure of how close to the expectation of the stakeholders the delivered
product is. These four aspects of quality may evolve over time, following the sequence
we described above, and hopefully their quality increases over time (inasmuch as
quality is quantifiable).

Risk and uncertainty
Finally the concept of Risk denotes the uncertainty that is associated to each of the four
fundamental concepts at some point in time: uncertainty in the Intent, because the
domain is new, for example, uncertainty in the Work to be performed, because the
process is unclear, risks associated with the people and therefore uncertainties in the
final Product. Similarly to Quality above, these uncertainties evolve over time: the risks
will be mitigated, unknowns will become known, but new risks keep emerging.

Figure 3: Time, Quality and Risk are attributes of Intent, Work, People and Product

Value and Cost
Finally, Value is associated with Intent and Product: we need to assign expected value
to the Intent to guide development of the Product over time, while the Cost of the
development is associated with the Work and the People. As software is essentially an
intellectual, human-intensive activity, they both are directly derived of the cost of the
People associated with the project and the Work they do: what, how much, for how
long. This is a characteristic of software development not shared with other engineering
disciplines, such as civil engineering.
"
Altogether a software development Project is all the work that people have to
accomplished over time to realize in a product some specific intent, at some level of
quality, delivering value to the business at a given cost.

The project and its context
A software project is temporary endeavour intended to create a new software product or
service, or the software part of a software-intensive system. It is temporary in the sense
that it has a definite beginning and a definite end, in contrast with a continuous
endeavour, such as running the IT operations of an organization. A software project has
specific and sometimes conflicting objectives and many constraints of diverse nature,
mainly technical, temporal and financial. Software project management is therefore the
art of balancing competing objectives, managing risks, and overcoming constraints to
successfully deliver a product which meets the needs of both customers and users (the
customer paying the bill not always being the end-user).
 " The software project, represented in our conceptual model with a tuple or
composite object [Intent, Work, People, Product], or more precisely with a sequence of
such composite objects, does not live in isolation, but it sits in a wider context, which is
crucial to understand for a software project manager.

" Intent and Product are mostly facing the users and customers community, intent
driven mostly by them, and the product delivered to them. Constraints come from the
customers, and from the business environment: the company which “owns” the project.
There are also constraints coming from legal and regulatory bodies in some industries,
especially in the safety-critical domains: transportation, defense, biomedical, nuclear,
and in the financial domain.
" People and Work are mostly influenced by the available technologies to develop
and deploy the software product or service: programming languages, methods,
development environment, software tools, reusable components, deployment platforms:
CPU, OS, network protocols, etc.

Figure 4: The project and its context

Mapping the core entities
Intent, revisited
The Intent of the project is an image, a description, a model of what the various parties
involved want to product to be. This Intent may take several forms, depending on the
type of software project and on the method or process used. We will assume that the
Intent can be decomposed in a set of Intent elements, coming from various sources,
and carrying different names in different methods:

• Users needs: a description of the needs of the user, at least the needs that we intend
to satisfy

• Vision: a document that describes in high level terms (RUP)
• An initial product backlog (Scrum)
• A Software Requirement Specification, SRS (IEEE Standard 830)
• A list of user stories (XP)
• A feature list (FDD)
• A use-case model, with or without supplementary specifications for non functional

requirements (RUP)
• A set of acceptance test cases (TDD)
• A list of software problem reports (or bugs, or defects)
• A prototype or mock-up
• An existing product (if we are migrating or re-engineering a legacy application, for

example)

Figure 5: Intent elements come in many different forms, and Intent constantly changes

Itʼs around the concept of Intent that we can introduce the subtle but pervasive concept
of change, since changes occurring along time in a project are in most cases changes
in Intent, which in turn will trigger changes in work and changes in the product. (There
maybe also changes in people, though, not related to intent: a resignation, for example.)

Work, revisited
Work is the stuff that makes traditional schedules and plans with associate with project
management: work items are found in network schedules, Gantt charts, in tools such as
Microsoft Project®, Niku® or Primavera®. Large chunk of work constitute Work
Breakdown Schedules (WBS), used for planning projects. Smaller work items are the
items that developers put on their to-do list, scribble on their white boards or their PDAs.
" The bulk of process descriptions, such as RUP® (IBM, 2007) or MSF® , are

dedicated to the description of work: sub-processes, activities, tasks, steps. They are
the elements of focus in software process standards such as IEEE-1074 (1997) or ISO
12207 (1995)
" One of the most difficult tasks of software project management is to derive from a
given Intent the required Work. We still only know how to do this very approximately,
and there are many work items that spring out spontaneously during the course of a
project, due to unknowns, to people making errors and other various mishaps.
" The amount of Work is also a key ingredient to the estimation of effort and
schedule, and therefore to the cost of the project. As we will see later, effort estimation
is another big hurdle in software development, the “black art”. Finally, project
management attempts to monitor progress while the project is on-going by comparing
actual work performed to the anticipated work.

Figure 6: Work Items come in many different forms and size

Many work items ʻoperateʼ on some artifact, that is, they use artifacts as input and
create or update artifacts. These artifacts, their templates, and the details of the work
are part of the projectʼs process, and these templates can evolve over time during a
project.

Product, revisited
One could claim that the delivered product is in the end the only thing which should
matter to the software project manager. What constitutes the product will vary greatly
across domains, from tiny software embedded in some device, to large distributed
systems, upgraded dynamically weekly, from shrink-wrapped software sold over the
internet to “software as a service”, from one-off “Kleenex” software rapidly assembled
out of a software junkyard to mission-critical applications maintained over 25 years. In
the simple cases, the product consists in executable code, often targeted to a specific

set of operating systems, accompanied by application data, and some supporting
material: user guides, training material, etc. Nowadays products are often expected to
run on multiple OS platforms, and several versions of these, as well as supporting
different locales: languages and work habits specific to the countries of the user.
" A notable concept associated to the product is that of a release, which is a
product made available to certain parties at given points in time during the project.

Figure 7: Elements of a Product vary across types of projects;
a Release and Reusable assets are distinguished forms of Product

It is around the concept of product that we can discuss issues such as software as an
asset, intellectual property rights, and the reuse of software assets from project to
projects, whether this software is open-source, commercial-off-the-shelf, or proprietary.

People, revisited
Weʼve come to realize, through some pains, that software engineering is not primarily a
technical issue, but a people issue. Most of the real difficulties in software development,
most of the errors and shortcomings are not related to technologies but to the people
developing it, their competence, experience and availability, the communication and
coordination between these people or teams of people. Therefore the staff component,
which is very often ignored in process standards and methods, or abstracted as some
kind of vague and perfect agent, plays a major role in our conceptual model. There are
several aspects crucial to software project management: the persons themselves, i.e.,
the individuals, with their knowledge and competence, the roles they play in the
software development process: analyst, developer, tester; their organizations in teams,
and the allocation of work to people or teams.

Figure 8: Persons, teams and roles

Itʼs also around our concept of people that we can discuss issues such as ethics and
professional practice.

Summary
All software development projects can be described as endeavours aiming at bridging
the gap between some Intent (a vision, a plan), and a Product (a tangible reality). Many
of the issues behind software project management reside in managing the various
concepts presented, especially the hidden ones: Work, People, Time, Quality and Risk,
and understanding their relationships.

We now have with this model a basis for describing and discussing many aspects of
software project management. Chapter 5 will dive into risk and uncertainty, chapter 6
and 7 into time and work, chapter 8 into quality. Intent will be at the center of chapter 9,
people will be discussed in chapters 14, 15 and 16.

Further reading
" For a good overview of the issues behind software development, you must read
the all time classic by Fred Brooks: No Silver Bullet (Brooks, 1986), and the reply by
Dan Berry (2002) on the Pain of Software Development [note: add URLs to biblio]
" Joel Jeffrey defined a more elaborate model of software development, when he
was trying to get a the core of the issues in software engineering (Jeffrey, 1996), and he
has inspired in part the model presented here."
" The Function-Behaviour-Structure (FBS) framework of engineering design in
general developed by John Gero and Udo Kannengiesser (Gero, 1990; Gero &
Kannengiesser, 2004), and which we mapped to software (Kruchten, 2005) has also
helped shaped this model.

Bibliography
Berry, D. (2002). The Inevitable Pain of Software Development: Why There Is No Silver
Bullet. Paper presented at the Workshop on Radical Innovations of Software and
Systems Engineering in the Future, Monterey, CA.

Brooks, F. P. (1986). No Silver Bullet-Essence and Accident in Software Engineering. In
H.-J. Kugler (Ed.), Proceedings of the IFIP Tenth World Computing Conference (pp.
1069-1076). Amsterdam, NL: Elsevier Science B.V.
Gero, J. S. (1990). Design prototypes: A knowledge representation scheme for design.
AI Magazine, 11(4), 26-36.
Gero, J. S., & Kannengiesser, U. (2004). The situated function–behaviour–structure
framework. Design Studies, 25(4), 373-391.
IBM. (2007). Rational Unified Process. Retrieved from http://www-306.ibm.com/
software/awdtools/rup/?S_TACT=105AGY59&S_CMP=WIKI&ca=dtl-08rupsite
IEEE. (1997). Standard for developing software life cycle processes. New York: IEEE
Standards Association.
ISO/IEC 12207. (1995). Information technology - Software life-cycle processes.
Geneva: ISO.
Jeffrey, H. J. (1996). Addressing the essential difficulties of software engineering.
Journal of Systems and Software, 32(2), 157-179.
Kruchten, P. (2005). Casting Software Design in the Function-Behavior-Structure (FBS)
Framework. IEEE Software, 22(2), 52-58.

