Technical Debt

January 2014

[]
1l
Reducing Friction in

Software Development

Philippe Kruchten
January 24, 2013

Philippe Kruchten, eho. p.eng, csop

Professor of Software Engineering
NSERC Chair in Design Engineering

Department of Electrical and Computer Engineering
University of British Columbia
Vancouver, BC Canada
pbk@ece.ubc.ca

Founder and president

Kruchten Engineering Services Ltd
Vancouver, BC Canada
philippe@kruchten.com

Outline

* What is technical debt?
* The technical debt landscape

Causes of technical debt
— Cost vs. value

Limits of the metaphor
Tackling Technical debt
¢ Friction in software development

Outline

* What is technical debt?
* The technical debt landscape

* Causes of technical debt
— Cost vs. value

* Limits of the metaphor
* Tackling Technical debt
* Friction in software development

Origin of the metaphor

Ward Cunningham, at OOPSLA 1992

“Shipping first time code is like going

into debt. A little debt speeds development
so long as it is paid back promptly with a
rewrite...

The danger occurs when the debt is not
repaid. Every minute spent on not-quite-right code counts
as interest on that debt. Entire engineering organizations
can be brought to a stand-still under the debt load of an
unconsolidated implementation, object-oriented or
otherwise.”

Cunningham, OOPSLA 1992

6

¢ Implemented features (visible and
invisible) = assets = non-debt
¢ Type 1: unintentional, non-strategic;
poor design decisions, poor coding
* Type 2: intentional and strategic:
optimize for the present, not for the
future.
— 2.A short-term: paid off quickly (refactorings, etc.)
« Large chunks: easy to track
* Many small bits: cannot track
— 2.B long-term

McConnell 2007

Copyright © 2014 by Philippe Kruchten

Technical Debt January 2014

Technical Debt Definition (2013) Technical Debt (M. Fowler)

ey

. . Reckless Prudent
* A design or construction approach
that is expedient in the short term, “We don't have time “We must ship now b
but that creates a technical context for design c‘;’,',‘:::l"e'"':‘c'ﬁ’,.
in which the same work will cost
more to do later than it would cost to Deliberace
do now (including increased cost Inadvertent
over time)' “Now we know how we
McConnell 2013 “What's Layering?” should have done it”
Fowler 2009, 2010
Technical Debt (Chris Sterling) Time is Money (. Gat)
* Technical Debt: issues found in the code that * Convert this in monetary terms:
will affect future development but not “Think of the amount of money the
those dealing with feature completeness. borrowed time represents — the
Oor grand total required to eliminate

* Technical Debt is the decay of allissues found in the code”
component and intercomponent
behaviour when the application functic

meets a minimum

Gat 2010

Example: TD is the sum of... Tech Debt (Jim Highsmith)
c m Once on far right of curve, all
* Code smells 167 person days Resp‘f;g{;‘:;m choices are hard
* Missing tests 298 person days _ m If nothing is done, it just gets
* Design 670 person days] worse
* Documentation 67 person days g = In applications with high
o technical debt, estimating is
3 | product Technical Debt nearly impossible
Totals 3 | Relesse L - .
__ — = Optimal CoC m Only 3 strategies
Work 1,202 person x days 1 ;—3 25678 1. Do nothlngr it gets worse
Cost 5577 000 Years 2. Replace, high cost/risk

3. Incremental refactoring,
commitment to invest

pyright © 2014 Philippe Kruchten 13 Copyright © 2014 Philippe Kruchten Source: Highsmith, 2009

Copyright © 2014 by Philippe Kruchten 2

Technical

Debt

January 2014

Value, Quality, Constraints

Value = extrinsic quality
— Metric: Net present value
Quality = intrinsic quality
— Metric: Technical debt
Constraints = cost,
schedule, scope

— Metric: Cost

Highsmith 2010

Copyright © 2014 Philippe Kruchten

State of affairs

* Opinions, posturing, proclamations

* Little objective facts

“...there is a plethora of attention-grabbing
pronouncements in cyberspace that have not been
evaluated before they were published, often
reflecting the authors’ guesses and experience on
the subject of Technical Debt.”

Copyright © 2

Spinola et al. 2013

14 Philippe Kruchten

Outline

What is technical debt?

The technical debt landscape
Causes of technical debt

— Cost vs. value

Limits of the metaphor
Tackling Technical debt

Friction in software development

Copyright © 2014 Philippe Kruchten 17

Technical debt landscape

m Mostly invisible Visible

architecture

New features
Additional functionality

Technological gap

Architectural debt
Structural debt

Test debt

Documentation debt

code

Low internal quality Defects
Code smells Low external quality

Code complexity

Coding style violations

< Evolution issues: evolvability) < Quality issues: maintainability)

Kruchten et al 2012

Copyright © 2014 Philippe Kruchten 18

Outline

What is technical debt?

The technical debt landscape
Causes of technical debt

— Cost vs. value

Limits of the metaphor
Tackling Technical debt

-1
o

Friction in software development

Copyright © 2014 Philippe Kruchten 19

Causes of Technical Debt

TECHNOLOGY

« Technology limitations
« Legacy code

« COTS

« Changes in technology
« Project maturity

PROCESS

- Little consideration of code maintenance
« Unclear requirements

« Cutting back on process (code reviews)
« Little or no history of design decisions

« Not knowing or adopting best practices

PEOPLE

+ Postpone work until needed

« Making bad assumptions

+ Inexperience

« Poor leadership/team dynamics

+ No push-back against customers

« “Superstars” — egos get in the way
« Little knowledge transfer

« Know-how to safely change code
« Subcontractors

PRODUCT

« Schedule and budget constraints

« Poor communication between developers
and management

« Changing priorities (market information)

« Lack of vision, plan, strategy

« Unclear goals, objectives and priorities

« Trying to make every customer happy

« Consequences of decisions not clear

Copyright ©

Lim et al. 2012
20

2014 Philippe Kruchten

Copyright © 2014 by Philippe Kruchten

Technical Debt January 2014

ot Tensions / Factors to Consider

LEERES

Pressure

» * Engineers don't like technical debt
L " they want to be technically flawless

Technical
Debt

Reduced
Development
Team
Velocity

* Project managers or business people don’t mind
technical debt

they want to capture market share

. Fail to Pay 3
Technical back

Debt Accrues Technical * However, tolerance for TD changes over the system
deBt lifetime of the system

Lim et al. 2012
Israel Gat, 2010
Value and Cost Value
. Intent Product
* Value: to the business (the users, the customers, the I — -
. Time Time
public, etc.) Quality Quality
* Cost: to design, develop, manufacture, deploy, Risk Risk
maintain } }
| |
. . Work People
» Simple system, stable architecture, many small Time Time
features: Quality Quality
— Roughly, value aligns to cost Risk Risk
* Large, complex, novel systems ?
— Not quite so COSt
What's in your backlog? TD: negative value, invisible
Visible Invisible Visible Invisible
Positive \[VAEETITEESS Architectural, Positive \EVAEETIGEE Architectural,

Added

Structural Added
Value functionality

Structural
features ed

Value functionality

Negative Technical Negative Technical
Value Debt Value Debt

Copyright © 2014 Philippe Kruchten 28

Copyright © 2014 Philippe Kruchten

Copyright © 2014 by Philippe Kruchten 4

Technical Debt January 2014

Technical Debt (1) Technical Debt (2)

$15 S 12 BU o s15 2 BN 1 Bt
- -
Lalss (b s LaJss [b s

$20 $19 $18
[« EE_ M : B s DHN & Bt

$25 $27 $28

Copyright © 2014 Philippe Kruchten 30 Copyright © 2014 Philippe Kruchten 31

Technical Debt (3) —

Relentless

Pressure

[12 BN 0 B

Reduced
Development
Team
Velocity

Take
Technical
Debt

B -

n “ 8 B Fail to Pay

Technical back
Debt Accrues Technical
Y debt

Israel Gat, 2010

Copyright © 2014 Philippe Kruchten 32 Copyright © 2014 Philippe Kruchten 33

- Technical Debt Interests .
N |

* In presence of technical debt,
cost of adding new features is higher;

* Defect = Visible feature with negative value o
velocity is lower.

* Technical debt = Invisible feature with negative

value * When repaying (fixing), additional cost for retrofitting
already implemented features

— Cost of fixing

) .) Technical debt not repaid => lead to increased cost,
— Value of repaying technical debt, interests loss of forever

productivity, etc. « Cost of fixing (repaying) increases over time

M. Fowler, 2009

Copyright © 2014 Philippe Kruchten 3 Copyright © 2014 Philippe Kruchten 35

Copyright © 2014 by Philippe Kruchten 5

Technical Debt

January 2014

TD litmus test

* If you are not incurring any interest, then it
probably is not a debt

McConnell 2013

Outline -
|

What is technical debt?
The technical debt landscape

Causes of technical debt
— Cost vs. value
Limits of the metaphor

Tackling Technical debt

Friction in software development

Tech Debt (mis)-conceptions

* Technical debt reifies an abstract concept

* Technical debt does not equate to bad quality

* Technical debt can be induces by a shift in context
* Defects are not technical debt

* Lack of progress is not technical debt

* New features yet to be implemented is not
technical debt

. It's only a Metaphor!

Metaphors give meaning to form, help ground our
conceptual systems.

Cognitive transfer: source domain to target
domain
— the <target> is the <source>

Lakoff and Johnson (1980) Metaphors we live by

Do not push any metaphor too far....

opyright © 2014 Philippe Kruchte

Where the metaphor breaks

* Technical debt does not always have to be repaid
* What does it mean to be “debt free”?
— TD has a large part of subjectivity
* Negative connotation
* May increase the value of a project for a time

* Tech Debt as Investment?

Where the metaphor breaks

Initial investment at TO in an environment EQ. Now
in T2, E has changed to E2, a mismatch, has
occurred, which creates a debt.

— The debt is created by the change of environment. The

right decision in the right environment at some time
may lead to technical debt.

Prudent, inadvertent

Copyright © 2014 by Philippe Kruchten

Technica

| Debt

January 2014

Where the metaphor breaks...

Technical debt depends on the future
Technical debt cannot be measured
You can walk away from technical debt

Technical debt should not be completely
eliminated

Technical debt cannot be handled in isolation
Technical debt can be a wise investment

Real Options Theory

* Often mentioned, but rarely put in application in
software

Copyright © 2014 Philippe Kruchten

TD and Real Options

Market loves it
+$4M

S
) Market hates it

+$1M
NPV (P,) = -2M + 0.5x4M + 0.5x1M = 0.5M

Source: K. Sullivan, 2010
at TD Workshop SEI 6/2-3

pyright © 2014 Philippe Kruchten 6

TD and Real Options (2)

-1M
/ Market loves it =iy S, +4M
M 0

Py Sy e S, ¥
S

&) Market hates it
+$1M

NPV (P,) =-1M + 0.5x3M + 0.5x1M = 1M

Taking Technical Debt has increased system value. Source: K. Sullivan, 2010

Copyright © 2014 Philippe Kruchten

TD and Real Options (3)

Q Take Debt

-1.5M
/ Market loves it =iy S, +4M
KTV o8
Py Sy m— S, v
Repay debt

Market hates it
+51M

o3
033

NPV (P;) =-1M + 0.67 x 2.5M + 0.33 x IM = 1M

More realistically:
Debt + interest
High chances of success

TD and Real Options (3)

Higher chance
of success

-1.5M
Market loves it ==y S, +4M

Y] o8
Pyt Sy mm— S, v

Repay debt +
50% interest
+$1M

S
"33 Market hates it

NPV (P;) =-1M +0.67 x 2.5M + 0.33 x IM = 1M

More realistically:
Debt + interest

High chances of success . .
Copyright © 2014 Philippe Kruchten

Copyrigh

t © 2014 by Philippe Kruchten

Technical Debt

January 2014

TD and Real Options (4)

Add feature
ST S — S,

/? SO

Favourable Aoy

.
/ W’e
2
v 5, —

N

Unfavourable

Not debt really, but options with different values...
Do we want to invest in architecture, in test, etc...

Source: K. Sullivan, 2010

Options Theory

* Often mentioned, but rarely put in application in
software

Not even scratched the surface
Pay-off not obvious, though...
— Too much guesswork involved to trust results,

— Lot of work involved

Potential vs. actual debt

* Potential debt
— Type 1:0K to do with tools (see Gat & co. approach)

— Type 2: structural, architectural, or technological gap:
Much harder

* Actual debt
— When you know the way forward

K.Schmid 2013

Outline

* What is technical debt?
* The technical debt landscape

Causes of technical debt
— Cost vs. value

Limits of the metaphor
Tackling Technical debt

o

* Friction in software development

g

How do people “tackle”
technical debt

Tackling Technical Debt

Attitudes and approaches found:
. Ignorance is bliss

. The elephant in the room

Big scary $5S$ numbers

Five star ranking

Constant reduction

R N

We're agile, so we are immune!

Copyright © 2014 by Philippe Kruchten

Technical Debt

January 2014

Ignorance is bliss

it, or do not know why

|-
|
|
-
K

K

You’re just slower, and slower, but you do not know

Velocity accumulated technical debt
impacts ability to deliver

The elephant in the room

Many in the org. know
about technical tech.

¢ Indifference: it's someone
else’s problem

Organization broken dowr
in small silos

No real whole product
mentality

Short-term focus

Big scary $SSS numbers

* Code smells

* Missing test

* Design

* Documentation

167 person days
298 person days
670 person days

67 person days

Totals
Work 1,202 person x days
Cost $577,000

Static analysis + Consulting

e Cutter Consortium: Gat, et al.

— Use of Sonar, etc.

— Focused on code analysis

— TD = total value of fixing the code base
* CAST software
* ThoughtWorks

Debt analysis engagements
Debt reduction engagements

Issues

* Fits the metaphor, indeed.
* Looks very objective... but...
* Subjective in:

— What is counted

— What tool to use

— Cost to fix

Not all fixes have the same resulting value.

What does it mean to be “Debt free”??

oyright © 2014 Philippe Kruchte

Sunk cost are irrelevant, look into the future only.

Five star ranking

* Define some maintainability index

* Benchmark relative to other software in the same
category

* Re-assess regularly (e.g., weekly)

* Look at trends, correlate changes with recent
changes in code base

* SIG (Software Improvement Group), Amsterdam
Powerful tool behind

opyright © 2014 Philippe Kruchte 61

Copyright © 2014 by Philippe Kruchten

Technical Debt

January 2014

Constant debt reduction

Make technical debt a visible item on the backlog

Make it visible outside of the software dev.
organization

Incorporate debt reduction as a regular activity

Use buffer in longer term planning for yet
unidentified technical debt

Lie (?)

Buffer for debt repayment

Debt

Defect Repayment
Estimate correction
Simple work uncertainties

Copyright © 2014 Philippe Kruchten

A later release

We are agile, so we’re immune!

In some cases we are agile and therefore we run faster into technical debt

Copyright © 2014 Philippe Kruchten

}_) Agile mottos

“Defer decision to the last responsible moment”
“YAGNI” = You Ain’t Gonna Need It
— But when you do, it is technical debt

— Technical debt often is the accumulation of too many
YAGNI decisions

“We’ll refactor this later”
“Deliver value, early”

Again the tension between the yellow stuff and the
green stuff

You’re still agile because you aren’t slowed down by
TD yet.

ippe Kruchten

Managing TD...

Identify sources of TD
Locate TD

— Not easy for McConnell type 2
Quantify TD

— Principal, Interest

Define actions

— Priorities

— Tooling

Assessment

Copyright © 2014 Philippe Kruchten

Copyright © 2014 by Philippe Kruchten

10

Technical Debt January 2014

) Lu . . 17 .
%Z Octopus: “All projects are different! Debt at the Architectural level

Domain, : Degree of * Design Structure Matrix (DSM)
Industry Innovation .
a w — a.k.a, Dependency Structure Matrix
* Domain Mapping Matrix (DMM)

Context

* Tools to create and manipulate DSMs and DMMs

S architec
Corporate & ture Organizational
National Culture distribu Maturity
tion

Copyright © 2014 Philippe Kruchten 7 Copyright © 2014 Philippe Kruchten

Outline =- =. Friction
* What is technical debt? “There is still much friction in the process of crafting
« The technical debt landscape complex software; the goal of creating quality
software in a repeatable and sustainable manner
remains elusive to many organizations, especially
those who are driven to develop in Internet time.”

Causes of technical debt
— Cost vs. value

Limits of the metaphor
Tackling Technical debt

Grady Booch’s keynote at ICSE
* Friction in software development <:] 2000 in Limerick, Ireland

pyright © 2014 Philippe Kruchten 73 Copyright © 2014 Philippe Kruchten

] . . [|
.. Friction Social debt ..

Motion
“Friction: the resistance that * Social debt is a state of a development project

one surface or object encounters Fricton] which is the result of the accumulation over time
when moving over another. of decisions about the way the development team
(or community) communicates, collaborates and
coordinates.

In software development, friction is the set of
phenomena that limits or constraints our progress,
therefore reduces our velocity (or productivity).

Technical debt causes friction.

Tamburri et al. 2013

pyright © 2014 Philippe Kruchten 75 Copyright © 2014 Philippe Kruchten

Copyright © 2014 by Philippe Kruchten 11

Technical Debt

January 2014

Social debt =.
In other words, decisions about :

— the organizational structure,

— the process,

— the governance,

— the social interactions,

Friction and Debt =.

Technical Debt

}:>Friction

Social Debt Reduced velocity

Negative Technical
Value Debt

* or some elements inherited through the people: Defects
— their knowledge, personality, working style, etc. Delays

Tamburrietal. 2013 o 2014 ohppe s

Parallel Technical & Social Debt Social debt
Visible Invisible Visible Invisible
Positive \EVEEEITESSS Architectural, Positive Community Community
Added Structural Features Structure
Value functionality features Value

Negative Social
Value

Debt

Tamburri et al. 2013

@ Conclusion

Technical debt is still more a rhetorical category than
a technical or ontological category.

The concept resonates well with the development
community, and sometimes also with management.

It bridges the gap between business decision makers
and technical implementers.

It’s only a metaphor; do not push it too far.
It’s not all bad.

Technical debt landscape

m Mostly invisible Visible

architecture code

a

& . .
New features S Architectural debt Low internal quality Defects

5

Additional functionality | 2 Structural debt Code smells Low external quality
_g Code complexity
15| Test debt Coding style violations
S
&

Documentation debt

< Evolution issues: evolvability) < Quality issues: maintainability)

Kruchten et al 2012

Copyright © 2014 by Philippe Kruchten

12

